

Question

How to develop a control strategy for automated guided vehicles which tracks a pre-defined trajectory ?

Features of our strategy:

- Generic for any kind of AGV with arbitrary number of wheels.
- Handling severe cornering maneuver.
- Carrying heavy load in elevated or banked road surface.

Automated Guided Vehicles

- Driver-less operation under supervisory system.
- Motion based on a pre-defined route.
- Wide range of application.

A generic framework of AGVs for various application.

Figure 1: Architecture of AGVs

Optimal Trajectory Tracking Control for Automated Guided Vehicles Amritam Das, Yanin Kasemsinsup and Siep Weiland

Control Systems Group, Dept. of Electrical Engineering

System Overview

• Exploiting multibody structure of vehicles.

Obtain desired F_x , F_y and M_z for $x_{ref}(t)$	Obtain desired F_x , F_y and M_z for $x_{ref}(t)$
Cost Functional:	Nonlinear dynamics of Wheel & tire:
$J(x_b^*, x_{\text{ref}}, u_b) = e^T(t_{k+1}) Q_f e(t_{k+1})$	$\dot{x}_w = f_w(x_w) + g_w u_w, \ y_w = h(x_w)$
$+ \int_{t}^{t_{k+1}} [e^{T}(t)Qe(t) + u_{i}^{T}(t)Ru_{b}(t)]dt$	Diffeomorphic Transformation:
Feedback:	$\xi = \Phi(x_w), \ \dot{\xi} = b(\xi) + A(\xi)u_w$
$A^T K + K A - K B B^{-1} B^T K + O = 0$	State Feedback Structure:
Feedforward:	$u_w = A^{-1}(\xi)[v - b(\xi)]$
$\dot{r}_b(t) = -[A^T - K B R^{-1} B^T] r_b(t) + Q x_{\text{ref}}(t),$	Virtual Control input:
$r_{b}(t_{k+1}) = -Q_{f}x_{ref}(t_{k+1})$	$\dot{\xi} = I \xi + b v_w$
Control input:	Design v_w with linear control technique.
$u_{b,\text{opt}}(t) = -R^{-1}B^{T}[K \ x_{b}(t) + r_{b}(t)]$	Closed loop nonlinear system is exponen- tially stable.

Force Distribution

Simulation Results

A three-stage cascade control scheme which

separates the dynamics of chassis from each wheel and tire.

The design is generic in the sense of incorporating multiple wheel & tire modules.

Incorporating steering torque as control variable allows for handling large steering angle.

Future Recommendations

Observer based control design in case of limited sensor measurements.

Addressing robustness issue regarding

model-plant mismatch, other uncertainties.

• Including actuator limits.