Sensorless Field-Oriented Estimation of Hybrid Stepper Motors in High-Performance Paper Handling

Dat Hoang, Amritam Das, Sjirk Koekebakker, Siep Weiland Control Systems Group

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Varioprin	+ i300				
Varioprin	1 1000				2 / 17

/Control Systems Group

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusi	ons
Hybrid st	epper motor (HS	SM)			3	8 / 17

- Two-phase HSMs used in direct-drive for printing applications
- Microstepping allows precise positioning

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Problem	formulation				4 / 17
Open-loop	o control				
🕨 No fee	edback required				
Mecha	anical resonances				
Ohmic	c and iron losses $ ightarrow$ h	neat generation	1		

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Problem f	formulation				4 / 17
Open-loop	control				
🕨 No fee	edback required				
Mecha	anical resonances				
🕨 Nhmic	c and iron losses $ ightarrow$ h	neat generation			

Sensorless Field-Oriented control (FOC)

- Requires feedback
- Significantly less mechanical vibration
- Efficient
- More flexibility (torque control, field-weakening)

Introduction Problem Formulation Modeling Methodology Experimental results	Conclusions
Problem formulation	5 / 17

Research question

How can sensorless field-oriented control of a hybrid stepper motor be designed and implemented in high-performance paper handling?

Main criteria

- Achieve rotor position error < 3 electrical degrees (< 1 mrad mechanically)
- Operation range from 0 RPM to 700 RPM

/Control Systems Group

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
How to n	nodel HSM: in ro	otating refe	rence frame		7 / 17
HSM model in rotating reference frame					
	, di _d				

$$L\frac{di_{d}}{dt} = v_{d} - Ri_{d} + LN\omega_{m}i_{q}$$
$$L\frac{di_{q}}{dt} = v_{q} - Ri_{q} - LN\omega_{m}i_{d} - K_{m}\omega_{m}$$
$$J\frac{d\omega_{m}}{dt} = \tau_{em} - B\omega_{m} - \tau_{L}$$
$$\frac{d\theta_{m}}{dt} = \omega_{m}$$

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
How to n	nodel HSM: in ro	otating refe	rence frame		7 / 17
HSM mod	lel in rotating refere	nce frame			

$$L\frac{di_{d}}{dt} = v_{d} - Ri_{d} + LN\omega_{m}i_{q}$$
$$L\frac{di_{q}}{dt} = v_{q} - Ri_{q} - LN\omega_{m}i_{d} - K_{m}\omega_{m}$$
$$J\frac{d\omega_{m}}{dt} = \tau_{em} - B\omega_{m} - \tau_{L}$$
$$\frac{d\theta_{m}}{dt} = \omega_{m}$$

Electromagnetic torque is proportional to i_q $\tau_{em} = K_m i_q$

TU/e

/Control Systems Group

August 19, 2019

 $\hat{\theta}_e$

/Control Systems Group

August 19, 2019

Phase inductance dependent of rotor position: Saliency

Inject high-frequent signal to obtain rotor position

- Injection into *d*-axis to minimize torque ripple
- Retrieve rotor information from q-axis

- Injection into *d*-axis to minimize torque ripple
- Retrieve rotor information from q-axis

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Simulation	: Combining th	ne estimator	rs		
	Ŭ				12 / 17

/Control Systems Group

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Experimen	tal results				14 / 17

- Rotating Luenberger observer max average error: 7 elec. degrees (mid-to-high speed)
- Saliency-based tracking max average error: 9 elec. degrees
- Max speed: 660 RPM

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Conclusions					
					15 / 17

- HSM modeled in *dq*-frame for FOC design
- Position control realized with cascade control
- Rotating Luenberger observer designed for mid-to-high
- Saliency-based tracking designed for zero-to-low speed
- Switching rule with hysteresis to combine estimators

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Conclusions					
					15 / 17

HSM modeled in dq-frame for FOC design

- Position control realized with cascade control
- Rotating Luenberger observer designed for mid-to-high
- Saliency-based tracking designed for zero-to-low speed
- Switching rule with hysteresis to combine estimators

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Conclusions					
					15 / 17

- HSM modeled in *dq*-frame for FOC design
- Position control realized with cascade control
- Rotating Luenberger observer designed for mid-to-high
- Saliency-based tracking designed for zero-to-low speed
- Switching rule with hysteresis to combine estimators

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Conclusions					
					15 / 17

- HSM modeled in *dq*-frame for FOC design
- Position control realized with cascade control
- Rotating Luenberger observer designed for mid-to-high
- Saliency-based tracking designed for zero-to-low speed
- Switching rule with hysteresis to combine estimators

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Conclusions					
					15 / 17

- HSM modeled in *dq*-frame for FOC design
- Position control realized with cascade control
- Rotating Luenberger observer designed for mid-to-high
- Saliency-based tracking designed for zero-to-low speed
- Switching rule with hysteresis to combine estimators

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
Conclusions					
					15 / 17

- HSM modeled in *dq*-frame for FOC design
- Position control realized with cascade control
- Rotating Luenberger observer designed for mid-to-high
- Saliency-based tracking designed for zero-to-low speed
- Switching rule with hysteresis to combine estimators

Introduction	Problem Formulation	Iviodeling	ivietnodology	Experimental results	Concil	usions
Recomme	ndations and fu	ture work				16 / 17
Recommen	dations for experin	nental setup				1
Use du	al H-bridge inverter	configuration i	nstead of a three	e-leg inverter		

Investigate saliency-based tracking closed-loop issues

Future work for sensorless FOC

- Extend control structure (Feed-forward, Field-weakening)
- Investigate observer performance under high load
- Switch between position control and torque control
- Analyze performance with paper handling setpoints

Introduction	Problem Formulation	Modeling	Methodology	Experimental results	Conclusions
					17 / 17

Thank You!