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Thermo-Fluidic Processes in Inkjet Printing

Inkjet printing is a physical integration of liquid material and solid medium.

Z Jetting Unit Fixation Unit

Thermo-fluidic processes affect the Print Quality.
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Jetting Unit Fixation Unit

wmII X

Common Properties of Thermo-Fluidic Processes:
1. Coupled Multi-variable PDEs.

2. Energy exchange of interacting physical phenomena over boundaries.
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A Bigger Picture

How to fully exploit the mutual interaction among different physical phenomena
for solving model-based problems that are governed by PDEs? J

Specifically:
1. How do we represent the interconnection?
2. How to quantify 'energy’ dissipation at the interconnection?

3. Can we always construct or deconstruct these systems in components that are
meaningful?
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Modeling Thermo-Fluidic Processes: Topology Description

Topology
1. A finite connected graph G = (N, €)
2. An adjacency matrix A.

» N € N denotes infinite dimensional dynamics of individual node.

» &;j € € denotes the interconnection of adjacent nodes.
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qf'xf gt 1. The state variables: z;: S; x T — R™, S; C R3.
T 2. The boundary inputs: ¢&%: B®t x T — R, B¥* C R2.
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Modeling Thermo-Fluidic Processes: Governing Dynamics

. Storage Function V; := <8,-z,-,z,->
Lo(S;)

N

. Supply Function S’ :=< 2% >
HPRLY THnEH " i L2(B] )

Edge & as a dissipative interconnection (Bj;):
1. Loss-less edge: B,(’J- =5;;+5;;i=0.
2. Lossy edge: B,lJ =5;;+5;;<0.
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Modeling Thermo-Fluidic Processes: Governing Dynamics

% < S/J-: every autonomous and regular interconnectant is dissipative.

Zil\il dd\f < 0: interconnection of dissipative components is stable and

dissipative.
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Modeling Thermo-Fluidic Processes: Governing Dynamics

1. Inputs: v; := [K,-(S)a8 -V b,(,j]z,-, s € B;J'

o . A 1
-/\/’i A/'J 2. Outputs: w; ==z, seB,.

1. Storage Function V; := <8,-z,-,z,->
L2(Si)

2. Supply Functi 5!.:=< . >
upply Function S; ; W;, Vi La(81,)

Open Questions:
1. Thermo-dynamic interpretation of the edges.

2. Model reduction of individual node without disrupting the edge behavior.
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Modeling Thermo-Fluidic Processes: Summary

A well-posed dynamic network of infinite dimensional models.

1. A finite and connected graph G = (N, £).
2. An adjacency matrix A.

3. Every node N; describes the thermal-fluidic process of a component

N; = (S;, BEY, B, D;, BSY).

4. Every edge &;; describes the interconnection of adjacent thermo- fluidic processes

&ij= (B B:I',j)'

ijo
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Modeling Thermo-Fluidic Processes: Summary

A well-posed dynamic network of infinite dimensional models.

1. A finite and connected graph G = (N, £).
2. An adjacency matrix A.

12 /26

3. Every node N; describes the thermal-fluidic process of a component

N; = (S;, BEY, B, D;, BSY).

4. Every edge &;; describes the interconnection of adjacent thermo- fluidic processes

&ij= (B B:I',j)'

ijo

Still the model is infinite dimensional!
/Control Systems Group August 29, 2018
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Three-ways to Solve A Model-Based Problem

- . e

Y
LCumpmg . o
Discretization
Infinite Dimensional Lumped ODE (NL) Finite Dimensional
Controller/Estimator model replacing Large Scale DAE
- — PDEs structure
l[)lscrclll.’llmn +
Finite Dimensional Finite Dimensional Reduced Order
Controller/Estimator Controller/Estimator Problem
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Controller/ Estimator Controller/ Estimator Controller/ Estimator
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Implementation
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Option 1: Lumped Model-Based Control of Jetting Process

Qin
H l H Qin) Tin H
1
\H
" | M No| | A
Reservoir — 1 " <
Ti Ty Ts
1 Qo T | |Q1w T
] v i
Hy H
' Distributor |Hy ||
[ Qu Qv
DFA
\J v \J
Qon Qo Qos 5

Qo _l_ Qoop

Qo

/Control Systems Group August 29, 2018



Introduction Problem formulation

Modeling Framework Methodologies Conclusions

Option 1: Lumped Model-Based Control of Jetting Process

L

Qorg Kl Qoo Qosy

/Control Systems Group

Network of finite dimensional systems

A finite connected graph G = (\V, €)

An adjacency matrix A # A"

Set of edges £ = {&; | for all (i,j) with A;; =1}
Set of nodes N = {N; =P;|i=1,---,L}

S

)‘(,'(t) A?Oxx A??xv Béxu Xi ( t)
P = [w,-(r)}z Ay, Ay Bl {w(t)]
yi(t) ¢y Ch. Di ui(t)

Oyx Oyv

Eij = A{wij = vilAij = 1,1 # j}.
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Option 1: Lumped Model-Based Control of Jetting Process

x(t) diagAgxx diagAgx, diagByxy x(t)
P =< | w(t) | = | diagAsux diagApuy diagBowu | | v(t)
y(t) diagCy,x diagCy,, diagDy,, u(t)

Interconnection Matrix:

v = Mw
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Option 1: Lumped Model-Based Control of Jetting Process

x(t)
y(t)

Interconnection Matrix:

diagAgxx diagAgx, diagByxy
P = W(t) = | diagAgux diagAgw, diagBowu

diagCy,x diagCy,, diagDy,,

v = Mw

LFR with M in Feedback
1. Interconnections are well-posed iff diag(/ — Agwy M) # 0.

2. We can obtain a full-block LPV model from the LFR structure.
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Centralized Output Tracking MPC on Jetting Process: Simulation

Feature of the controller
Anticipation and pre-compensation of the temperature changes

Controller's Job
1. Utilise prior information of print-profile

2. Respect the constraints on states and inputs
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Centralized Output Tracking MPC on Jetting Process: Simulation

Feature of the controller
Anticipation and pre-compensation of the temperature changes

Controller’'s Job

1. Utilise prior information of print-profile

2. Respect the constraints on states and inputs

MPC CONTROLLER

Prediction Satisfy Minimized
Model Constraint Cost
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Lumped Model-Based Control of Jetting Process: Centralized Control

|Ti(t) — Tref] <0.01°C, Vt>T and Vi=1,---, Np

y

MIMO State Space Model:

B {X(t) = A(0(2))x(t) + B(6(t))u(t) + £(6(t))
y(t) = (1)
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Lumped Model-Based Control of Jetting Process: Centralized Control

|Ti(t) — Trer] <0.01°C, Vt>T and Vi=1,-- Np

MIMO State Space Model:

B {X(t) = A(0(2))x(t) + B(6(t))u(t) + £(6(t))
y(t) = (1)

Two actuation scenarios

| \

1. Only using the 2 heating inputs in solid blocks.

2. Using additional N,, piezo electric actuators as heating inputs.
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Centralized Output Tracking MPC on Jetting Process: Simulation
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Lumped Model-Based Control of Jetting Process: Future Work

. Distributed Optimization: Decomposing the centralized problems into
sub-problems that can be solved in parallel and/or sequential manner.

2. Soft-sensing Temperature: Using self-sensing mechanism of piezo-electric
actuators.

3. Design of Actuation Pulse: Thermal actuation of the piezo-electric
actuators should not form drops.
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Option 2: Parameter Estimation of Paper-Sheet in Fixation

Modeling the fixation process requires physical parameters of the papers.

- S U A
| Double coating uncalendared: 22/ per side ' 250w Dauble coating calendered: 22 gim” per side
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Option 2: Parameter Estimation of Paper-Sheet in Fixation

Modeling the fixation process requires physical parameters of the papers.

| [Basspacar: s0gimt woodtree "Z50um Frecosting: 10g/m” per side

| Double conting uncalender per side 250, Double costing calendersd: 22 gim” per side

Input-output based estimation of Spatially Varying physical coefficients
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Parameter Estimation of Paper-Sheet in Fixation in Frequency Domain

PDE: E(x)% = D(x)%% + U(x)% + K(x)z + P(x)q(t).

Ox?

Measured Output: y™(wy) = col(z(x,wp), -+, z(xM,wy)),w, € W.

Estimation Problem: i L m — H(wy, x,0 2 gy
! | ' 9:2C0|(rET?IDrjU,K,P) Zﬁ_lx{/’ H Y (Wg) (wg X ) q(wé) H X

Boundary conditions are unknown.
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Parameter Estimation of Paper-Sheet in Fixation in Frequency Domain

Parametrization of Spatially Varying Functions: ~(x) ~

Finite Difference/Volume Discretization of PDEs: ;
m
Estimation Problem: m|n S oM W | y™(we, x

™) — G™(jwe, 0) qlwe) 7 -

SR Bi(x)0,.

— A(9)z + B(®)q,
=C"z.

Two extremum measurements are considered as inputs to mimic boundaries.
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Simulation Results: % = D(X)% + P(x)q(t).

The basis functions B,(x) are known a priori. J

—— Simulated P (z)
- - -Initial guess P ()
- Estimated P ()
0 Sensor locations
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Parameter Estimation of Paper Sheet: Open Problems

Currently we are implementing it for estimating parameters of papers
in an experimental set-up.

. What if the basis functions are unknown?
. Optimal experiment design?

. Convexifying the optimization problem?

A w N =

. Any alternative/ innovative approach?
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Conclusions

General Conclusions

1. Interconnection among thermo-fluidic processes can be viewed as dissipative
exchange of energy.

25 / 26

2. Finite dimensional lumping of infinite dimensional models poses similar
interconnection structure.

3. Infinite dimensional models require discretization, however, the stage at which the
discretization has to be performed is not trivial.
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Conclusions

25 / 26

Application Specific Conclusions

1. Piezo electric actuators as additional control inputs improve the the performance in
jetting process.

2. Utilizing the a priori knowledge of the flow pattern per nozzle can improve the
performance of the jetting process.

3. Physical parameters of papers typically vary over spatial domain that are estimated
using spatially distributed sensor array.
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Thank You!
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