# Thermo-Fluidic Processes in Spatially Interconnected Structures

Amritam Das

**Dept. of Electrical Engineering** 

océ



Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
| •0           |                     |                    |               |             |
| Thermo-Flu   | uidic Processes     |                    |               | 2 / 26      |

## Mutual effect of thermal energy on interacting solids and fluids.



### Mutual effect of thermal energy on interacting solids and fluids.



| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
| 0•           |                     |                    |               |             |
| Thermo-Fluic | lic Processes: I    | Examples           |               | 3 / 26      |



| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
| 0•           |                     |                    |               |             |
| Thermo-Fluid | lic Processes: E    | Examples           |               | 3 / 26      |





| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
| 00           |                     |                    |               |             |
| Thermo-F     | luidic Processes: E | xamples            |               | 3 / 26      |
|              |                     |                    |               |             |







**TU/e** August 29, 2<u>018</u>

| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
| 00           | 00000               | 0000               | 00000000000   |             |
| Thermo-F     | luidic Processes: E | xamples            |               | 3 / 26      |
|              |                     |                    |               |             |







| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
|              | 0000                |                    |               |             |
| Thermo-Fl    | uidic Processes in  | Inkjet Printing    |               | 4 / 26      |
|              |                     |                    |               |             |

Inkjet printing is a physical integration of liquid material and solid medium.





Thermo-fluidic processes affect the Print Quality.

| Introduction | Problem formulation | Modeling Framework  | Methodologies | Conclusions |
|--------------|---------------------|---------------------|---------------|-------------|
|              | 0000                |                     |               |             |
| How Do Th    | ermo-Fluidic Pro    | cesses Influence Pr | int Quality?  | 5 / 26      |



/Control Systems Group



• Q<sub>01</sub>

•Q.00

Qos

/Control Systems Group













#### What do we want?

Every liquid droplet from individual nozzle should maintain a desired temperature.

TU/e

/Control Systems Group

August 29, 2018

| Introduction | Problem formulation | Modeling Framework  | Methodologies | Conclusions |
|--------------|---------------------|---------------------|---------------|-------------|
|              | 0000                |                     |               |             |
| How Do TI    | hermo-Fluidic Pro   | cesses Influence Pr | int Quality?  | 6 / 26      |
|              |                     |                     |               |             |

Thermo-fluidic processes in Fixation.



**TU/e** August 29, 2018



### Thermo-fluidic processes in Fixation.





**TU/e** August 29, 2018









August 29, 2018



| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
|              | 00000               |                    |               |             |
| A Bigger P   | icture              |                    |               | 8 / 26      |

# How to fully exploit the mutual interaction among different physical phenomena for solving model-based problems that are governed by PDEs?

#### Specifically:

- 1. How do we represent the interconnection?
- 2. How to quantify 'energy' dissipation at the interconnection?
- 3. Can we always construct or deconstruct these systems in components that are meaningful?

| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
|              | 00000               | 0000               | 00000000000   |             |
| A Bigger     | Picture             |                    |               | 8 / 26      |

# How to fully exploit the mutual interaction among different physical phenomena for solving model-based problems that are governed by PDEs?

#### Specifically:

- 1. How do we represent the interconnection?
- 2. How to quantify 'energy' dissipation at the interconnection?
- 3. Can we always construct or deconstruct these systems in components that are meaningful?

TU/e



### A dynamic network of infinite dimensional systems.



/Control Systems Group

**TU/e** August 29, 2018

9 / 26







1. A finite connected graph  $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ 

2. An adjacency matrix A.

▶  $N_i \in N$  denotes infinite dimensional dynamics of individual node.

▶  $\mathcal{E}_{i,j} \in \mathcal{E}$  denotes the interconnection of adjacent nodes.

TU/e

| Introduction                         | Problem formulation           | Modeling Framework                                                                                                                                                                                                                                                        | Methodologies                                                                                                                                                                                                                                              | Conclusions                                                                                                         |
|--------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Modeling                             | Thermo-Fluidic                | Processes: Governing                                                                                                                                                                                                                                                      | Dynamics                                                                                                                                                                                                                                                   | 11 / 26                                                                                                             |
| $q_i^{\text{ext}}, q_i^{\text{int}}$ | $\mathcal{N}_i$               | <ol> <li>The state variables: z<sub>i</sub>:</li> <li>The boundary inputs:</li> <li>The in-domain inputs:</li> </ol>                                                                                                                                                      | $S_{i} \times \mathbb{T} \to \mathbb{R}^{n_{i}},  S_{i} \subseteq$ $I_{i}^{\text{ext}}: \mathbb{B}_{i}^{\text{ext}} \times \mathbb{T} \to \mathbb{R}^{n_{i}},$ $q_{i}^{\text{int}}: \mathbb{B}_{i}^{\text{int}} \times \mathbb{T} \to \mathbb{R}^{m_{i}},$ | $\mathbb{R}^{3}.$ $\mathbb{B}_{i}^{ext} \subseteq \mathbb{R}^{2}.$ $\mathbb{B}_{i}^{int} \subseteq \mathbb{S}_{i}.$ |
|                                      | PDE Model(I                   | $\mathcal{D}_{i} \left\{ egin{array}{l} \mathcal{E}_{i} rac{\partial z_{i}}{\partial t} = \mathcal{A}_{i} z_{i} + \mathcal{B}_{i}^{int} q_{i}^{int} \\ \mathcal{A}_{i} z_{i} := oldsymbol{ abla} \cdot [\mathcal{K}_{i}(s) oldsymbol{ abla} - oldsymbol{B}_{i}]  ight\}$ | $\boldsymbol{V}_i(s)]z_i$                                                                                                                                                                                                                                  |                                                                                                                     |
| Exter                                | rnal boundaries ( $B^{ext}_i$ | $) egin{cases} \mathcal{H}_i^{	ext{ext}} \; z_i &= oldsymbol{q}_i^{	ext{ext}}  . \ \mathcal{H}_i^{	ext{ext}} \; z_i := [\mathcal{K}_i(s) rac{\partial}{\partial oldsymbol{b}_i^{	ext{ext}}}  -  . \end{cases}$                                                           | $oldsymbol{V}_i \cdot oldsymbol{b}_i^{	ext{ext}} + H_i^{	ext{ext}}(s)]z_i$                                                                                                                                                                                 |                                                                                                                     |

**TU/**e August 29, 2<u>018</u>



Edge  $\mathcal{E}_{i,j}$  as a dissipative interconnection  $(\mathsf{B}'_{i,j})$ :

- 1. Loss-less edge:  $B_{i,j}^{I} := S_{i,j} + S_{j,i} = 0$ .
- 2. Lossy edge:  $B_{i,j}^{I} := S_{i,j} + S_{j,i} < 0.$

TU/e



dV<sub>i</sub>/dt ≤ S<sup>l</sup><sub>i,j</sub>: every autonomous and regular interconnectant is dissipative.
 ∑<sup>M</sup><sub>i=1</sub> dV<sub>i</sub>/dt ≤ 0: interconnection of dissipative components is stable and dissipative.

/Control Systems Group

tu∕e



#### **Open Questions:**

- 1. Thermo-dynamic interpretation of the edges.
- 2. Model reduction of individual node without disrupting the edge behavior.



August 29, 2018

TU/e



#### Still the model is infinite dimensional!

/Control Systems Group

August 29, 2018

TU/e



August 29, 2018













Network of finite dimensional systems

- 1. A finite connected graph  $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- 2. An adjacency matrix  $A \neq A^{\top}$
- 3. Set of edges  $\mathcal{E} = \{\mathcal{E}_{i,j} \mid \text{for all } (i,j) \text{ with } A_{i,j} = 1\}$
- 4. Set of nodes  $\mathcal{N} = \{\mathcal{N}_i := \mathcal{P}_i | i = 1, \cdots, L\}$

$$\mathcal{P}_{i} := \left\{ \begin{bmatrix} \dot{x}_{i}(t) \\ w_{i}(t) \\ y_{i}(t) \end{bmatrix} = \begin{bmatrix} A^{i}_{\theta_{XX}} & A^{i}_{\theta_{XV}} & B^{i}_{\theta_{XU}} \\ A^{i}_{\theta_{WX}} & A^{i}_{\theta_{WY}} & B^{i}_{\theta_{WU}} \\ C^{i}_{\theta_{YX}} & C^{i}_{\theta_{YY}} & D^{i}_{\theta_{YU}} \end{bmatrix} \begin{bmatrix} x_{i}(t) \\ v_{i}(t) \\ u_{i}(t) \end{bmatrix} \right\}$$

$$\mathcal{E}_{i,j} := \{ w_{i,j} = v_{j,i} | A_{i,j} = 1, i \neq j \}.$$

/Control Systems Group

August 29, 2018

TU/e

14 / 26



$$\mathcal{P} := \left\{ \begin{bmatrix} \dot{x}(t) \\ w(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} \mathsf{diag} A_{\theta_{XX}} & \mathsf{diag} A_{\theta_{XY}} & \mathsf{diag} B_{\theta_{XU}} \\ \mathsf{diag} A_{\theta_{WX}} & \mathsf{diag} A_{\theta_{WY}} & \mathsf{diag} B_{\theta_{WU}} \\ \mathsf{diag} C_{\theta_{YX}} & \mathsf{diag} C_{\theta_{YY}} & \mathsf{diag} D_{\theta_{YU}} \end{bmatrix} \begin{bmatrix} x(t) \\ v(t) \\ u(t) \end{bmatrix} \right\}$$

Interconnection Matrix:

 $v = \mathcal{M}w$ 





$$\mathcal{P} := \left\{ \begin{bmatrix} \dot{x}(t) \\ w(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} \text{diag} A_{\theta x x} & \text{diag} A_{\theta x v} \\ \text{diag} A_{\theta w x} & \text{diag} A_{\theta w v} \\ \text{diag} C_{\theta y x} & \text{diag} C_{\theta y v} & \text{diag} D_{\theta y u} \end{bmatrix} \begin{bmatrix} x(t) \\ v(t) \\ u(t) \end{bmatrix} \right\}$$

### Interconnection Matrix:

 $v = \mathcal{M}w$ 



## LFR with ${\mathcal M}$ in Feedback

- 1. Interconnections are well-posed iff diag $(I A_{\theta wv}\mathcal{M}) \neq 0$ .
- 2. We can obtain a full-block LPV model from the LFR structure.

#### /Control Systems Group

August 29, 2018

TU/e



- 1. Utilise prior information of print-profile
- 2. Respect the constraints on states and inputs



### Controller's Job

- 1. Utilise prior information of print-profile
- 2. Respect the constraints on states and inputs

| Prediction<br>Model |  |  |
|---------------------|--|--|
|                     |  |  |

TU/e



- 1. Utilise prior information of print-profile
- 2. Respect the constraints on states and inputs



TU/e

August 29, 2018



- 1. Utilise prior information of print-profile
- 2. Respect the constraints on states and inputs





2. Respect the constraints on states and inputs

#### MPC CONTROLLER



TU/e





- 1. Only using the 2 heating inputs in solid blocks.
- 2. Using additional  $N_m$  piezo electric actuators as heating inputs.

August 29, 2018

IU/e







August 29, 2018



Input-output based estimation of Spatially Varying physical coefficients

**TU/e** August 29, 2018



Boundary conditions are unknown.

/Control Systems Group



TU/e

August 29, 2018







TU/e

August 29, 2018







Currently we are implementing it for estimating parameters of papers in an experimental set-up.

- 1. What if the basis functions are unknown?
- 2. Optimal experiment design?
- 3. Convexifying the optimization problem?
- 4. Any alternative/ innovative approach?

| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
|              |                     |                    |               |             |
| Conclusions  |                     |                    |               |             |

## **General Conclusions**

- 1. Interconnection among thermo-fluidic processes can be viewed as dissipative exchange of energy.
- 2. Finite dimensional lumping of infinite dimensional models poses similar interconnection structure.
- 3. Infinite dimensional models require discretization, however, the stage at which the discretization has to be performed is not trivial.

25 / 26

| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
|              | 00000               | 0000               | 00000000000   |             |
| Conclusions  |                     |                    |               | 25 / 26     |

# Application Specific Conclusions

- 1. Piezo electric actuators as additional control inputs improve the the performance in jetting process.
- 2. Utilizing the a priori knowledge of the flow pattern per nozzle can improve the performance of the jetting process.
- 3. Physical parameters of papers typically vary over spatial domain that are estimated using spatially distributed sensor array.

| Introduction | Problem formulation | Modeling Framework | Methodologies | Conclusions |
|--------------|---------------------|--------------------|---------------|-------------|
|              |                     |                    |               |             |
|              |                     |                    |               |             |
|              |                     |                    |               |             |
|              |                     |                    |               | 26 / 26     |

# **Thank You!**