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Automated Guided Vehicles (AGVs)

Supervised autonomous driving in pre-defined route.
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Automated Guided Vehicles (AGVs)

Different application, identical driving principal.



3 / 12

July 10, 2017/Control Systems Group

Motivation Problem formulation Methodologies Simulation Results Conclusions

Research Question

How to develop a control strategy for automated guided vehicles
which tracks a pre-defined trajectory ?

Features:

1. Generic for any kind of AGV with arbitrary number of wheels.

2. Handling severe cornering maneuver.

3. Carrying heavy load in elevated or banked road surface.
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System Overview

Vehicle as multibody system.

Wheel & Tire
Module 1

Wheel & Tire
Module N

Rigid body of the 
chassis

Wheel & Tire Modules

Observation
Separate the control problem of each wheel & tire module from chassis.
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Controller Architecture
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Determine the optimal longitudinal, lateral body force and also the
yaw moment to be applied to the center of mass of the chassis.
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Distribute the desired forces and moment from the chassis controller
over N controllable wheels, under physical constraints.
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Determine the control input for each in-wheel actuator to track
desired wheel-forces.
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Chassis Control

Objective

Determine the desired ub := [Fx Fy Mz ]T for given xref(t).
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Chassis Control

Objective

Determine the desired ub := [Fx Fy Mz ]T for given xref(t).
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Considerations:

I Chassis as rigid body.

I Including load, new center of mass is
calculated.

I Nonlinear dynamics of the chassis
ẋb = fb(xb, ub).

I xb includes longitudinal velocity, lateral
velocity, yaw rate, roll, roll rate.
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Chassis Control

Objective

Determine the desired ub := [Fx Fy Mz ]T for given xref(t).
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Steps:

I Divide xref(t) into finite segments.

I Linearize the model for each segment.

I Apply receding horizon LQ optimal control.
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Chassis Control

Objective

Determine the desired Fx , Fy and Mz for xref(t) with t ∈ [tk , tk+1].
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Steps:

I Divide xref(t) into finite segments.

I Linearize the model for each segment.

I Apply receding horizon LQ optimal control.

Cost Functional for kth segment:

J(xb
∗, xref, ub) = eT (tk+1) Qf e(tk+1)

+
∫ tk+1

tk
[eT (t)Qe(t) + uTb (t)Rub(t)]dt

Tracking error e(t) := xref(t)− xb(t)
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Chassis Control

ARE based State Feedback:

ATK + KA− K B R−1BTK + Q = 0,
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ARE based State Feedback:

ATK + KA− K B R−1BTK + Q = 0,

Anticipative Feedforward:

ṙb(t) = −[AT − K BR−1BT ]rb(t) + Qxref(t),

rb(tk+1) = −Qf xref(tk+1)
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Chassis Control

ARE based State Feedback:

ATK + KA− K B R−1BTK + Q = 0,

Anticipative Feedforward:

ṙb(t) = −[AT − K BR−1BT ]rb(t) + Qxref(t),

rb(tk+1) = −Qf xref(tk+1)

Control Input:

ub,opt(t) = −R−1BT [K xb(t) + rb(t)].
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Force Distributor

Objective

Destribute desired Fx , Fy and Mz to each wheel tire module.
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Force Distributor

Objective

Destribute desired Fx , Fy and Mz to each wheel tire module.
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Optimization Problem:

arg min
f

J = f T W f

f is a vector containing all fx,i and
fy ,i ; i = 1, ..N.
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Optimization Problem:

arg min
f

J = f T W f

f is a vector containing all fx,i and
fy ,i ; i = 1, ..N.
Location of each wheel:

M f = Fd

F d is the desired control signal from the
outer body control.
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Force Distributor

Objective

Destribute desired Fx , Fy and Mz to each wheel tire module.
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Optimization Problem:

arg min
f

J = f T W f

f is a vector containing all fx,i and
fy ,i ; i = 1, ..N.
Location of each wheel:

M f = Fd

F d is the desired control signal from the
outer body control.
Limitation on vertical load:

G f ≤ h
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Tire Control

Objective

Determine the steering and driving actuation for generating the desired tire
forces.
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Tire Control

Objective

Determine the steering and driving actuation for generating the desired tire
forces.
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Tire Control

Objective

Determine the steering and driving actuation for generating the desired tire
forces.
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Wheel & Tire Dynamics:

I Nonlinear slip dynamics and steer-by
wire dynamics:

ẋw = fw (xw ) + gwuw , yw = h(xw )

I Inputs(uw ): Steering torque and wheel
torque

I Output(yw ): wheel forces in
longitudinal and lateral direction.
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Tire Control

Diffeomorphic Transformation:

ξ = Φ(xw ), ξ̇ = b(ξ) + A(ξ)uw

State Feedback Structure:

uw = A−1(ξ)[v − b(ξ)]

Virtual Control input:
ξ̇ = I ξ + bvw

Design vw with linear control technique.

Closed loop nonlinear system is exponentially stable.
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Simulation Results

Simulation Setting

Six wheeled vehicle with independent actuation on each wheel.
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Figure: Reference Route
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Simulation Results

Simulation Setting

Six wheeled vehicle with independent actuation on each wheel.
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Figure: Closed loop tracking
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Simulation Results

Simulation Setting

Six wheeled vehicle with independent actuation on each wheel.
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Figure: Reference state trajectory
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Simulation Results

Simulation Setting

Six wheeled vehicle with independent actuation on each wheel.
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Figure: Wheel torques for the wheels on each of three axles. Green:=Front Axle;
Cyan:=Center Axle; Purple:=Rear Axle.
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Simulation Results

Simulation Setting

Six wheeled vehicle with independent actuation on each wheel.
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Figure: Steer torques for the wheels on each of three axles. Green:=Front Axle;
Cyan:=Center Axle; Purple:=Rear Axle.
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Conclusions

A three-stage cascade control scheme which separates the dynamics of
chassis from each wheel and tire.

The design is generic in the sense of incorporating multiple wheel & tire
modules.

Incorporating steering torque as control variable allows for handling
large steering angle.
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Future Recommendations

Observer based control design in case of limited sensor measurements.

Addressing robustness issue regarding model-plant mismatch, other
uncertainties.

Including actuator limits.
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Thank You

QUESTIONS ?
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