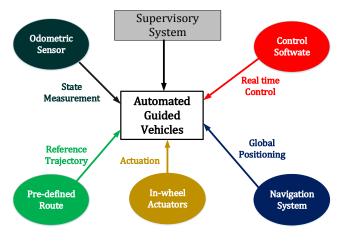
Optimal Trajectory Tracking Control for Automated Guided Vehicles

Amritam Das, Yanin Kasemsinsup, Siep Weiland

Control Systems Group

Dept. of Electrical Engineering



Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

July 10, 2017

/Control Systems Group

July 10, 2017

Motivation Problem formulation Methodologies Simulation Results Conclusions Automated Guided Vehicles (AGVs)
2 / 12

TU/e July 10, 2017

Methodologies •0 Automated Guided Vehicles (AGVs) 2 / 12

TU/e

 Motivation
 Problem formulation
 Methodologies
 Simulation Results
 Conclusion

 •••
 •••
 •••
 •••
 •••
 •••

 Automated Guided Vehicles (AGVs)

TU/e July 10, 2017

2 / 12

Motivation Problem formulation Methodologies Simulation Results C Automated Guided Vehicles (AGVs)

TU/e

2 / 12

Automated Guided Vehicles (AGVs)

Different application, identical driving principal.

/Control Systems Group

July 10, 2017

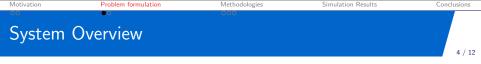
TU/e

2 / 12

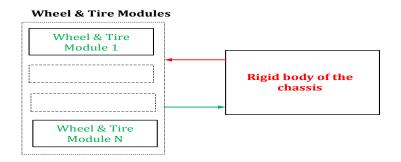
Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
• Research	Question			
				3 / 12

How to develop a control strategy for automated guided vehicles which tracks a pre-defined trajectory ?

Features:


- 1. Generic for any kind of AGV with arbitrary number of wheels.
- 2. Handling severe cornering maneuver.
- 3. Carrying heavy load in elevated or banked road surface.

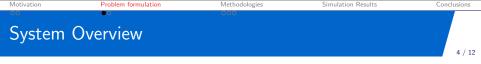
Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
00				
Research	Question			3 / 12


How to develop a control strategy for automated guided vehicles which tracks a pre-defined trajectory ?

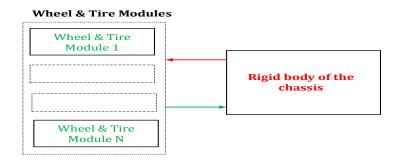
Features:

- 1. Generic for any kind of AGV with arbitrary number of wheels.
- 2. Handling severe cornering maneuver.
- 3. Carrying heavy load in elevated or banked road surface.

Vehicle as multibody system.



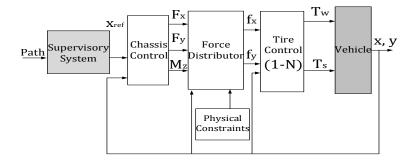
Observation


Separate the control problem of each wheel & tire module from chassis.

/Control Systems Group

July 10, 2017

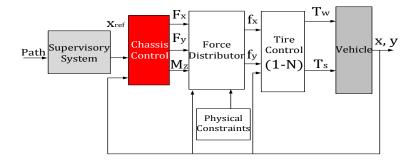
Vehicle as multibody system.


Observation

Separate the control problem of each wheel & tire module from chassis.

/Control Systems Group

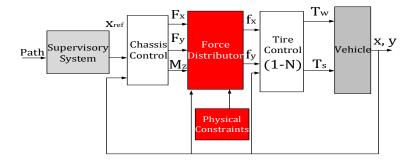
July 10, 2017



Cascade Control structure.

/Control Systems Group

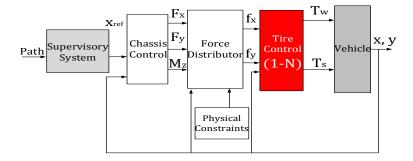
July 10, 2017



Determine the optimal longitudinal, lateral body force and also the yaw moment to be applied to the center of mass of the chassis.

/Control Systems Group

July 10, 2017

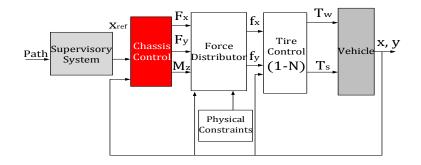


Distribute the desired forces and moment from the chassis controller over N controllable wheels, under physical constraints.

/Control Systems Group

July 10, 2017

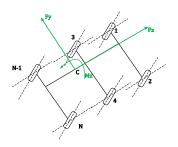
Determine the control input for each in-wheel actuator to track desired wheel-forces.


TU/e

/Control Systems Group

July 10, 2017

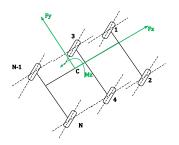
Determine the desired $u_b := [F_x \ F_y \ M_z]^T$ for given $x_{ref}(t)$.



/Control Systems Group

July 10, 2017

Determine the desired $u_b := [F_x \ F_y \ M_z]^T$ for given $x_{ref}(t)$.

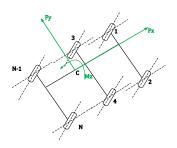


Considerations:

- Chassis as rigid body.
- Including load, new center of mass is calculated.
- Nonlinear dynamics of the chassis $\dot{x}_b = f_b(x_b, u_b).$
- x_b includes longitudinal velocity, lateral velocity, yaw rate, roll, roll rate.

Determine the desired $u_b := [F_x \ F_y \ M_z]^T$ for given $x_{ref}(t)$.

Steps:


- Divide $x_{ref}(t)$ into finite segments.
- Linearize the model for each segment.
- Apply receding horizon LQ optimal control.

/Control Systems Group

July 10, 2017

Determine the desired F_x , F_y and M_z for $x_{ref}(t)$ with $t \in [t_k, t_{k+1}]$.

Steps:

- Divide $x_{ref}(t)$ into finite segments.
- Linearize the model for each segment.
- Apply receding horizon LQ optimal control.

Cost Functional for k^{th} **segment**:

$$J(x_b^*, x_{ref}, u_b) = e^T(t_{k+1}) \ Q_f \ e(t_{k+1})$$

 $+ \int_{t_k}^{t_{k+1}} [e^{\mathsf{T}}(t) Q e(t) + u_b^{\mathsf{T}}(t) R u_b(t)] dt$

Tracking error $e(t) := x_{ref}(t) - x_b(t)$

TU/e

/Control Systems Group

July 10, 2017

ARE based State Feedback:

$$A^{\mathsf{T}}K + KA - K B R^{-1}B^{\mathsf{T}}K + Q = 0,$$

/Control Systems Group

Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
		000		
Chassis C	Control			6 / 12

ARE based State Feedback:

$$A^T K + K A - K B R^{-1} B^T K + Q = 0,$$

Anticipative Feedforward:

$$\dot{r}_b(t) = -[A^T - K BR^{-1}B^T]r_b(t) + Qx_{\text{ref}}(t),$$

 $r_b(t_{k+1}) = -Q_f x_{\text{ref}}(t_{k+1})$

/Control Systems Group

July 10, 2017

Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
		000		
Chassis C	Control			6 / 12

ARE based State Feedback:

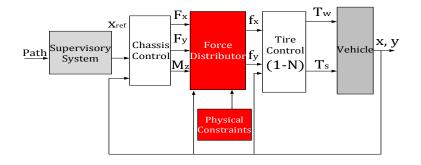
$$A^T K + K A - K B R^{-1} B^T K + Q = 0,$$

Anticipative Feedforward:

$$\dot{r}_b(t) = -[A^T - K BR^{-1}B^T]r_b(t) + Qx_{\text{ref}}(t),$$

$$r_b(t_{k+1}) = -Q_f x_{\text{ref}}(t_{k+1})$$

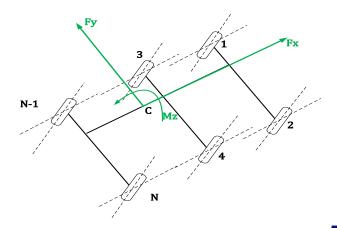
Control Input:


$$u_{b,opt}(t) = -R^{-1}B^{T}[K x_{b}(t) + r_{b}(t)].$$

/Control Systems Group

July 10, 2017

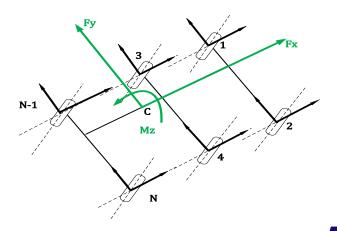
Destribute desired F_x , F_y and M_z to each wheel tire module.



/Control Systems Group

July 10, 2017

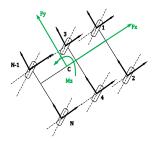
Destribute desired F_x , F_y and M_z to each wheel tire module.



/Control Systems Group

July 10, 2017

Destribute desired F_x , F_y and M_z to each wheel tire module.



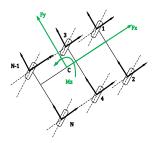
/Control Systems Group

July 10, 2017

Destribute desired F_x , F_y and M_z to each wheel tire module.

Optimization Problem:

$$\arg\min_{f} J = f^T W f$$


f is a vector containing all $f_{x,i}$ and $f_{y,i}$; i = 1, ..N.

/Control Systems Group

July 10, 2017

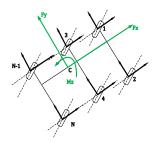
Destribute desired F_x , F_y and M_z to each wheel tire module.

Optimization Problem:

$$\arg\min_{f} J = f^T W f$$

f is a vector containing all $f_{x,i}$ and $f_{y,i}$; i = 1, ..N. Location of each wheel:

 $M f = F_d$


 F^d is the desired control signal from the outer body control.

/Control Systems Group

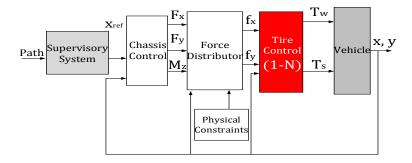
July 10, 2017

Destribute desired F_x , F_y and M_z to each wheel tire module.

Optimization Problem:

$$\arg\min_{f} J = f^T W f$$

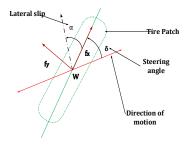
f is a vector containing all $f_{x,i}$ and $f_{y,i}$; i = 1, ..N. Location of each wheel:


 $M f = F_d$

 F^d is the desired control signal from the outer body control. Limitation on vertical load:

July 10, 2017

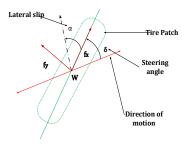
Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
		000		
Tire Cor	itrol			8 / 12


Determine the steering and driving actuation for generating the desired tire forces.

TU/e July 10, 2017

Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
		000		
Tire Cor	ntrol			8 / 12

Determine the steering and driving actuation for generating the desired tire forces.



July 10, 2017

Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
		000		
Tire Co	ntrol			8 / 12

Determine the steering and driving actuation for generating the desired tire forces.

Wheel & Tire Dynamics:

Nonlinear slip dynamics and steer-by wire dynamics:

$$\dot{x}_w = f_w(x_w) + g_w u_w, \ y_w = h(x_w)$$

- Inputs(u_w): Steering torque and wheel torque
- Output(y_w): wheel forces in longitudinal and lateral direction.

Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
		000		
Tire Cor	ntrol			8 / 12

Diffeomorphic Transformation:

$$\xi = \Phi(x_w), \ \dot{\xi} = b(\xi) + A(\xi)u_w$$

State Feedback Structure:

$$u_w = A^{-1}(\xi)[v - b(\xi)]$$

Virtual Control input:

$$\dot{\xi} = I \, \xi + b v_w$$

Design v_w with linear control technique.

Closed loop nonlinear system is exponentially stable.

/Control Systems Group

TU/e

July 10, 2017

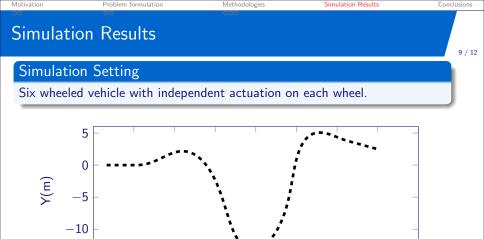


Figure: Reference Route

X(m)

July 10, 2017

TU/e

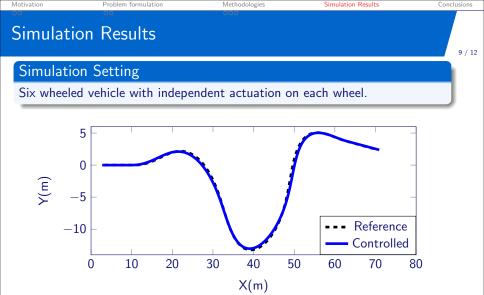
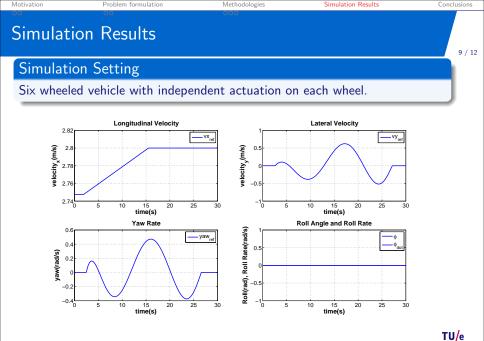



Figure: Closed loop tracking

July 10, 2017

Figure: Reference state trajectory

July 10, 2017

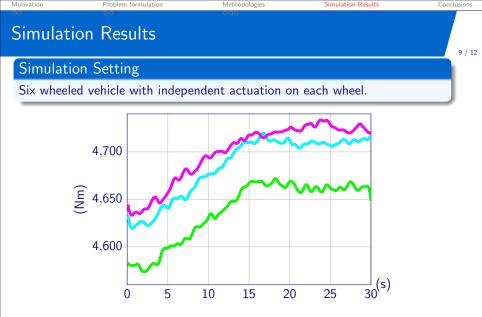


Figure: Wheel torques for the wheels on each of three axles. Green:=Front Axle; Cyan:=Center Axle; Purple:=Rear Axle.

/Control Systems Group

July 10, 2017

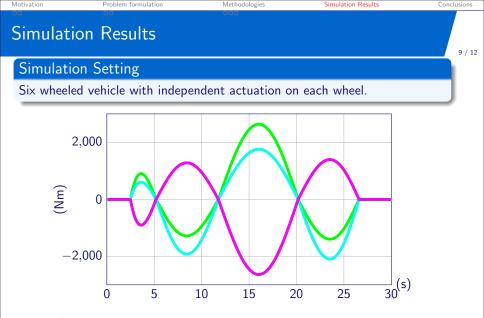


Figure: Steer torques for the wheels on each of three axles. Green:=Front Axle; Cyan:=Center Axle; Purple:=Rear Axle.

/Control Systems Group

July 10, 2017

Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
Conclus	ions			10 / 12
A . I				

- A three-stage cascade control scheme which separates the dynamics of chassis from each wheel and tire.
- The design is generic in the sense of incorporating multiple wheel & tire modules.
- Incorporating steering torque as control variable allows for handling large steering angle.

Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
Future F	Recommendatio	ns		
	rver based control des	0		11 / 12 ents.

- Addressing robustness issue regarding model-plant mismatch, other uncertainties.
- Including actuator limits.

Motivation	Problem formulation	Methodologies	Simulation Results	Conclusions
Thank \	You			
				12 / 12

QUESTIONS ?

/Control Systems Group

July 10, 2017