Keeping Feedback in Neural Networks
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A Few Words About My PhD

Digital twin for thermo-fluidic processes in inkjet printing

Ink inlet

Ink return

L1

L2

DMO L31 DM]| L32

NP1 NP2

Requirements:

® How to achieve specific temperature at individual droplets?

® |s it possible to achieve that without adding new sensors or actuators?
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A Few Words About My PhD

Digital twin for thermo-fluidic processes in inkjet printing J

D Spatially invariant

|:| Spatially varying
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A Few Words About My PhD

Digital twin for thermo-fluidic processes in inkjet printing J

I - PIE

Advantages of Partial Integral Equation (PIE):

® Analysis and synthesis on PIE only requires LMIs (no numerical approximation)

® A software package PIETOOLS is co-developed to perform functionalities of PIE

2/18 14.6.2021
*Das (2020): A Digital Twin for Controlling Thermo-Fluidic Processes



Today’s Talk: Keeping Feedback in Neural Networks

Based on my research for past 8 months and on some of the ideas | believe worth pursuing )

QOutline

@ Feedback control

@ Intro to RNNs

© View RNNs as feedback control systems

@ Connecting convex optimization and computation of RNNs
@ Some open problems

@ Concluding remarks
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What’s Feedback Control All About?

Shaping input’s sensitivity at the output

Yy
@7_>
Controller|*——
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What'’s Feedback Control All About?
Shaping input’s sensitivity at the output

® "|deally, a genuine theory of feedback is one that
describes the fundamental properties of systems
that belong in a given region of objectives,
Y ignorance and constraints.."- |.M. Horowitz(1963)

Model —

Controller|*———

Some merits in linear regime

® | /O properties have graphical (visual) interpretation: Nyquist theory

® Quantifiable (derivable) margins of stability and robustness directly from 1/0O rerlattion
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What's Feedback Control All About?
Shaping input’s sensitivity at the output

® "|deally, a genuine theory of feedback is one that
describes the fundamental properties of systems
that belong in a given region of objectives,
Y ignorance and constraints.."- |.M. Horowitz(1963)

Model —

Controller|*———

® No direct extension towards nonlinear elements

roximating result available, e.g. Circle criterion, Harmonic Analysis

® Some app
16:2021




Example of Feedback in Nonlinear Systems: Recurrent Neural Network

Feedforward Perceptron: universal approximator of static plant )
ey
4!
W, y =g(2) “
x@ > 7z —p §

£

5/18 14.6.2021



Example of Feedback in Nonlinear Systems: Recurrent Neural Network

Feedforward Perceptron: universal approximator of static plant )
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Neural Networks: Role of Recurrence

Recurrent Network: universal approximator of dynamic plant (involving sequential inputs and outputs) J

output Y Yo N Y2
vector
ho hy
recurrent cell —_ R
he
input
vector Xt X0 X1 X2
o)
Ve = f(xe, he—1)
output input  past memory
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Neural Networks: Role of Recurrence

Recurrent Network: universal approximator of dynamic plant (involving sequential inputs and outputs) J

output Y Yo N Y2
vector
ho hy
recurrent cell —_ R
he
input
vector Xt X0 X1 X2
o)
Ve = f(xe, he—1)
output input  past memory

Feedback is inherent part of the structure!

6/18 14.6.2021



Feedback Structure of RNNs: An lllustration

he = wphi—1 +wyyi—1 + wexs

Canonical version of an RNN :=
yr = G(hy)
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Feedback Structure of RNNs: An lllustration

Canonical version of an RNN := {

he = wphi—1 +wyyi—1 + wexs
yr = G(hy)

7/18
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Feedback Structure of RNNs: An lllustration

Linear filter Nonlinear function
(Dynamic) (Static)
—~

Yt

G()
)
Wyq

1+ wng

~——

Linear filter

1/0 relation of the pre-trained RNN

Wyq Wy

0= + r,— G7!
1+whqyt 1 — wng t Yt

~— static nonlinear
8/18 14.6.2021 linear shift




Control Theoretic Interpretation of the Feedback Structure

® | et us look at one element:

‘/,C y ® The supplied energy (in incremental sense)
H AV = <I1—$2,H($1)—H($2)>

® H is incrementally passive if AV >0
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Control Theoretic Interpretation of the Feedback Structure

® | et us look at one element:

./I/. y ® The supplied energy (in incremental sense)
H AV = <J}1 —$2,H(J}1) —H($2)>

® H is incrementally passive if AV >0

In the language of operator theory

Incremental passivity is synonymous to Monotonicity on signal space
(A positive change in the input should cause a positive change in the output)

*Camlibel and Schumacher (2016), “Linear passive systems and maximal monotone mappings"
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Control Theoretic Interpretation of the Feedback Structure

® | et us look at one element:

./I/. y ® The supplied energy (in incremental sense)
H AV = <J}1 —J,‘Q,H(J}l) —H($2)>

® H is incrementally passive if AV >0

In the language of operator theory

Incremental passivity is synonymous to Monotonicity on signal space
(A positive change in the input should cause a positive change in the output)

*Camlibel and Schumacher (2016), “Linear passive systems and maximal monotone mappings"
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Feedback Structure of RNNs: Passivity/Monotonicity View-Point

Linear filter Nonlinear function
(Dynamic) (Static)
A~ A~

Tt Yt

G()

~—

Linear filter
(Dynamic)

1/0 relation of the pre-trained RNN

Wyq Wy
0=—* +
T+ wng” " T—wng

10/18 14.6.2021 static nonlinear
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Feedback Structure of RNNs: Passivity/Monotonicity View-Point

Linear filter Nonlinear function
(Dynamic) (Static)

T (

( wyg \
Lt wpg |
~—~
Linear filter
(Dynamic)

Wyq Wy
= +
1+ whqyt 1 —wpq

Montone

z— Gy

Montone

1/0 relation of the entire RNN is a difference of monotone relation

A0

Tanh ReLU

max(0, )

tanh(z)
: x

Sigmoid

Linear

Ve o=

0(z) = =

1+e*

y

® Characterize each operators based on monotonicity
Operator F' is called monotone iff

<z —rF(z)— F(r)> > 0 for any inputs z,7 € X

10/18 14.6.2021

J

ote: In case of -ve feedback, i/o relationship would be monotone. Classical feedback control is all about that



Feedback Structure of RNNs: General Setting
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Feedback Structure of RNNs: General Setting

e H, Fy, E5 are monotone operators
® /0 relation: 0 = H(y) + E1(y) — Ea2(y) — x
® Covers many classes of RNNs, e.g. LSTM, GRU

Main Question
How to develop a scalable (algorithmic) tool for RNNs?

e.g. Given z = z*, find y € Y such that 0 = H (y) + E1(y) — 2* — Ea2(y)
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Computational Framework: Connecting Monotonicity and Convexity

G is a monotone operator iff <z —rG(z) — G(r)> > 0 for any inputs z,7 € X

e Key property: The gradient of a convex function is monotone*

® Consequence: Minimizing a convex function is equivalent to finding the zero of a monotone operator

If F(z) is convex, arg 12%3 F(x) = findz € R™ such that 0= VF(z)

e Application: Large-scale optimization, distributed optimization for multi-agent systems, distributed
Nash equilibria for cooperative games™*

* Rockafellar (1976): Monotone Operators and the Proximal Point Algorithm.
** Ryu & Lin (2020): Large-Scale Convex Optimization via Monotone Operators
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Computational Frameowork: Finding Zero of Monotone Operators

Given a montone operator R, a solution to the following problem
0 € R(x)
is a fixed point of the following relation
xf = F(xy), F isderived from R
You can find zy by solving the fixed point iteration
()

If F:= (I +aR)™! (a.k.a resolvent), then the fixed point iteration converges. a > 0 is
the step-size

k+1 _
Ty =F

Advantages

® Finding resolvents for linear operator and activation functions are easy

® Solving 0 € Y7 | R;(z) can be made scalable by splitting the computation of each resolvent F;
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Finding Zero of Difference between Monotone Operators

i
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Finding Zero of Difference between Monotone Operators

X Yy
o }] 1
® |nspiration from Difference of Convex optimization:

@4' If F(z),G(x) are convex,
critical pt. F(z) —G(z) = 0 € VF(x)—VG(x)
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Finding Zero of Difference between Monotone Operators

X Yy
- }] 2
® |nspiration from Difference of Convex optimization:
El If F(x),G(x) are convex,
critical pt. F(z)—G(z) = 0€ VF(x)—-VG(z)

L—’ EQ " ® Algorithm:

1: Repeat z* = argmin F(z) —

Linearized G(z)
2: until stopping criterion is satisfied
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Finding Zero of Difference between Monotone Operators

x @J
® Algorithm:
1: Given: An initial guess yg
3: Do
yiv1 = find0 € A(y)—B(y:)
i=i+1
-1 * . . e . . e
0e H (y)+ E1(y) — 2™ — Ex(y) 4: until stopping criterion is satisfied
——
Aly) B(y)
Results in a convergent and scalable algorithm )

*Das, Chaffey, and Sepulchre (2021): Oscillations in Mixed-Feedback Systems, CDC'21(under review, Journal in progress)
*Das (2021): Optimization Tools for LSTMs, NIPS'21 (to be submitted)
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Two Interesting Problems: Robustness Against Adversarial Inputs

-
x%( w, Ye
1—wnq .
- \ 4 ® Determine the (convex) set X > x such that
ly =yl <~
® Given the (convex) set X' 3 z find w,, wy, wy, and
m% the minimum value of 7 such that ||y — y*|| <~

q(f) = fia -

Note: In control theory, this is called robust-control problem (uses convex optimization)
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Two Interesting Problems: Adding Controller

® How to parameterize and learn F? I

xr

0=H '(y)+ Ei(y) — z—Es(y)

Note: In computational neurosience, this combination of 4+ve and -ve feedback is the source
of spiking (the way neurons communicate)

*Burghi (2020): Feedback for Neuronal System ldentification
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A Control Theory of RNNs: Summary

RNNs are mix-signed feedback interconnection of monotone operators

Yy
l i 1 ® Scalable to deep networks by splitting the
+ o computation
N ® H, FE;, Es may consist of more sophisticated
El operators, e.g. Laplacian, convolution etc.
- N J ® x.y can be continuous functions, even random
3 variable (however, the algorithm changes)
D
E’ ® Adding physical/dynamical constraints are
2 possible (e.g. PINNs)
0= H_l(y) + E1(y) — x—Es(y) ® Nyquist-like diagram is possible for monotone

operartor (It is called Scaled Relative
Graph-SRGs)
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Thank You!



