Model Approximation of Thermo-Fluidic Diffusion Processes in Spatially Interconnected Structures

Amritam Das, Siep Weiland, Laura lapichino

Dept. of Electrical Engineering

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
•0					
Thermo-Flu	uidic Processes				2 / 18

Mutual effect of thermal energy on interacting solids and fluids.

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
•0					
Thermo-Fl	uidic Processes				2 / 18

Mutual effect of thermal energy on interacting solids and fluids.

1. Coupled Distributed Parameter Systems.

2. Energy exchange of interacting physical phenomena over boundaries.

TU/e June 15, 2018

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
0●					
Thermo-F	Fluidic Processes	s: Examples			

3 / 18

/Control Systems Group

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
00					
Thermo-F	luidic Processe	s: Examples			3 / 18

TU/e June 15, 2018

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
00					
Thermo-F	luidic Processes	: Examples			3 / 18

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
00					
Thermo-F	uidic Processes	s: Examples			3 / 18

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
	•				
Problem					4 / 18

How to fully exploit the mutual interaction among different physical phenomena for solving model-based problems?

Specifically:

- 1. Preserving the boundary conditions at the spatial interconnection.
- 2. Dealing with multi-varibale coupled problems.
- 3. Solving the boundary control problems.

TU/e June 15, 2018

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
	•				
Problem					4 / 18

How to fully exploit the mutual interaction among different physical phenomena for solving model-based problems?

Specifically:

- 1. Preserving the boundary conditions at the spatial interconnection.
- 2. Dealing with multi-varibale coupled problems.
- 3. Solving the boundary control problems.

In a graph, individual systems are a set of Nodes that interact through Edges.

/Control Systems Group

1. A finite connected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$

2. An adjacency matrix A, with $A = A^T$.

▶ $\mathcal{E}_{i,j} \in \mathcal{E}$ denotes the interconnection of adjacent nodes.

External boundaries
$$(\mathsf{B}_i^{\mathsf{ext}})$$
 $\begin{cases} \mathcal{H}_i^{\mathsf{ext}} \ z_i = q_i^{\mathsf{ext}}, \\ \mathcal{H}_i^{\mathsf{ext}} \ z_i := [\kappa_i(s) \frac{\partial}{\partial \mathbf{b}_i^{\mathsf{ext}}} + \mathcal{H}_i^{\mathsf{ext}}(s)] z_i \end{cases}$

June 15, 2018

June 15, 2018

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusi	ions
		0000				
Modeling	Framework: Su	mmary			8	8 / 18

- 1. A finite and connected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.
- 2. A symmetric adjacency matrix A.
- 3. Every node \mathcal{N}_i describes local thermal-fluidic diffusion

 $\mathcal{N}_i = (\mathbb{S}_i, \mathbb{B}_i^{\mathsf{ext}}, \mathbb{B}_i^{\mathsf{int}}, \mathsf{D}_i, \mathsf{B}_i^{\mathsf{ext}}).$

4. Every edge $\mathcal{E}_{i,j}$ describes the interconnection of thermal and fluidic process

 $\mathcal{E}_{i,j} = (\mathbb{B}_{i,j}^I, \mathsf{B}_{i,j}^I).$

Control Systems Group

TU/e June 15. 2018

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
			0000		
Step 1:	Separation of Solu	ution			9 / 18

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
			0000		
Step 1: S	eparation of Sol	ution			9 / 18

A) Homogenization

$$\begin{bmatrix} z_1 \\ \vdots \\ z_M \end{bmatrix} := \begin{bmatrix} x_1 \\ \vdots \\ x_M \end{bmatrix} + \mathcal{G} \begin{bmatrix} q_1^{\text{ext}} \\ \vdots \\ q_M^{\text{ext}} \end{bmatrix}$$

/Control Systems Group

I J e

B) Define an extended state space (Σ)

$$\underbrace{\begin{bmatrix} \mathcal{E} & 0 \\ 0 & I \end{bmatrix}}_{\mathbf{E}} \begin{bmatrix} \dot{x} \\ \dot{q}^{\text{ext}} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathcal{A} & \mathcal{A}\mathcal{G} \\ 0 & 0 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} x \\ q^{\text{ext}} \end{bmatrix}}_{\mathbf{B}} + \underbrace{\begin{bmatrix} \mathcal{B}^{\text{int}} & -\mathcal{E}\mathcal{G} \\ 0 & I \end{bmatrix}}_{\mathbf{B}} \underbrace{\begin{bmatrix} q^{\text{int}} \\ \dot{q}^{\text{ext}} \end{bmatrix}}_{\mathbf{B}}$$

/Control Systems Group

Signal Projection:
$$\hat{x}^e(s, t) = \sum_{m=1}^{H} \Theta_m(t) \Phi_m(s)$$

Residual System:
$$\mathbf{R}(x^e) := \mathbf{E} \frac{\partial x^e}{\partial t} - \mathbf{A}x^e - \mathbf{B}u = 0.$$

System Projection: $\langle \Phi_m, \mathbf{R}(\hat{x}^e) \rangle = 0; \quad \forall m \in \{1, \cdots, H\}.$

/Control Systems Group

Can be used for any model based problems.

June 15, 2018

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
			0000		
Feedback	Control Problem	n: LQ optimal p	roblem		11 / 18

The system:
$$\mathbf{E}\frac{\partial x^e}{\partial t} = \mathbf{A}x^e + \mathbf{B}u$$
.

Cost Functional:
$$J(x^e, u) := \int_0^\infty \langle P(s)x^e, x^e \rangle dt + \int_0^\infty \langle R(s)u, u \rangle dt$$

Controller: $u = -K(x^e)$

K is the stabilizing, positive semi-definite, self-adjoint solution to the generalized OARE.

June 15, 2018

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
			000●		
Feedback	Control Probler	n: In Finite Dim	ension		12 / 18

The projected system:
$$\langle \Phi_m, \mathbf{R}(\hat{x}^e) \rangle := E_n \dot{\hat{x}}^e = A_n \hat{x}^e + B_n \hat{u}.$$

Cost Functional:
$$J(\hat{x}^e, \hat{u}) := \int_0^\infty \langle \hat{x}^e, P_n \hat{x}^e \rangle dt + \int_0^\infty \langle \hat{u}, R_n \hat{u} \rangle dt$$

Controller: $u = -K_n \hat{x}^e$

 K_n is the stabilizing, positive semi-definite, symmetric solution to the generalized ARE.

Need to solve sparse matrix equalities (Use ADI, Krylov, S).

/Control Systems Group

TU/e June 15. 2018

Goal: Corneal Topography

Determine topical drug concentration to achieve dilation across pupil.

Specifics

- 1. The pre-corneal area has leakage in radial direction due to tears.
- 2. The anterior chamber has leakage due to drug transport by systemic membrane.
- 3. Angular directions are insulated.

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
				0000	
Example:	Boundary Contro	ol of Opthalmic I	Drug Delivery		

Topology

1. The nodes are $\{N_1, N_2, N_3\}$. The edges are $\{\mathcal{E}_{1,2}, \mathcal{E}_{2,3}\}$. 2. $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. 3. For \mathcal{N}_i , $\mathbb{S}_i = [r_i, r_{i+1}]$ for $i = \{1, 2, 3\}$. $\mathbb{B}_1^{\text{ext}} = r_1$, $\mathbb{B}_3^{\text{ext}} = r_4$ and $\mathbb{B}_2^{\text{ext}} = \emptyset$. 4. For every edge $\mathcal{E}_{i,j}$, $\mathbb{B}_{1,2}^l = r_2$ and $\mathbb{B}_{2,3}^l = r_3$.

> **TU/**e June 15, 2018

14 / 18

/Control Systems Group

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
				0000	
Example:	Boundary Contro	ol of Opthalmic	Drug Delivery		15 / 18

Model:

$$\frac{\partial m_i(r,\theta,t)}{\partial t} = \frac{D_i}{r} \frac{\partial}{\partial r} \Big(r \frac{\partial m_i(r,\theta,t)}{\partial r} \Big) + \frac{D_i}{r^2} \Big(\frac{\partial^2 m_i(r,\theta,t)}{\partial \theta^2} \Big).$$

External Boundary conditions:

$$h_1^{-1}D_1\frac{\partial m_1(r_1,\theta,t)}{\partial r} = [m_1(r_1,\theta,t) - m_0(\theta)],$$
$$h_4^{-1}D_3\frac{\partial m_3(r_4,\theta,t)}{\partial r} = -[m_3(r_4,\theta,t) - Q^{\text{top}}(\theta,t)].$$

Interface Boundary conditions i, j = 1, 2:

$$\begin{bmatrix} I & -I \\ D_i \frac{\partial}{\partial \mathbf{b}_{i,j}^l} & -D_j \frac{\partial}{\partial \mathbf{b}_{i,j}^l} \end{bmatrix} \begin{bmatrix} m_i(r_{i+1}) \\ m_j(r_{j+1}) \end{bmatrix} = 0.$$

/Control Systems Group

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
Example:	Boundary Contr	ol of Opthalmic I	Drug Delivery	000	
					16 / 18
					TU/e

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
Conclusio	on and Future wo	ork			17 / 18

Conclusion

- 1. Generic framework to explicitly include the spatial interconnection.
- 2. Interconnection is viewed as an exchange of interface input-output.
- 3. Reduced order solution of a well-posed boundary control systems.

Future Work

- 1. Interconnection in the view of dissipation.
- 2. Considering time varying topology (e.g. drying of papers).
- 3. Including multi-physics models (e.g. fluid dynamics, thermo-elasticity).

Introduction	Problem formulation	Modeling Framework	Methodologies	Results	Conclusions
Thank You					18 / 18

Thank You!

TU/e June 15, 2018