Analysis and Control of Networked Infinite Dimensional Systems

Amritam Das, Siep Weiland

Control Systems Group, Eindhoven University of Technology

Who Am I?

Inkjet Printing

Ink is jetted on the substrate medium in a **predefined** pattern

Inkjet Printing

Ink is jetted on the substrate medium in a **predefined** pattern

* J. R. Castrejón-Pita; S. J. Willis; Inconsistency in Ink Properties in Printing (Review of Scientific Instruments-2015)

3 / 25 3.12.2019

Thermal effects on printhead.

Thermal effects on printhead.

Requirements

- No possibility of additional sensor or actuators
- Good print-quality and high through-put

Thermal effects on printhead.

Objective

Design a feedback controller that minimizes the gradient of ink-temperature among nozzles without placing additional sensors and actuators?

Common Aspects:

- 1 Spatial interconnection among multi-physics processes
- **2** Coupled multi-variable spatio-temporal dynamics (PDEs) and lumped dynamics (ODEs)
- S Energy exchange of interacting physical phenomena over boundaries
- **4** Requires guaranteed performance in the presence of unmeasured physical quantities

Few aspects of discretization:

- **1** We have made significant progress due to HPC
- **2** Curse of dimensionality: moder reduction is a must
- **3** Plant and model are not the same

Few aspects of infinite dimensional approach:

1 Plant and model are the same

- 2 Methods are problem specific, not scalable
- **3** Beautiful mathematics, questionable tractability

Few aspects of infinite dimensional approach:

1 Plant and model are the same

- **2** Methods are problem specific, not scalable
- **3** Beautiful mathematics, questionable tractability

6/25 3.12.2019 How to bridge ideas from finite dimensions to PDEs ?

A new framework for analysis and control of infinite dimensional systems

Specifically

- **1** Solved using LMIs (polynomial time executable)
- **2** Generic and scalable (plug the model, execute the result)
- **③** Does not depend on conventional discretization technique

Why infinite dimensional systems and finite dimensional linear systems are not same?

For linear ODEs with inputs and outputs,

e.g. Matrix-valued KYP Lemma (LMI):

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t) + Du(t), \\ A, B, C, D \text{ are matrices} \end{split} \qquad \begin{array}{ccc} P \succ 0 \\ \begin{bmatrix} -\gamma I & D^{\top} & B^{\top} P \\ D & I & C \\ PB & C^{\top} & A^{\top} P + PA \end{bmatrix} \prec 0. \end{split}$$

For linear PDEs with inputs and outputs,

 $\dot{\mathbf{x}}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}u(t),$ $u(t) = \mathcal{C}\mathbf{x}(t) + \mathcal{D}u(t).$

 $\mathcal{A},\ \mathcal{B},\ \mathcal{C}$ and \mathcal{D} are differential or unbounded operators

e.g. Operator-valued KYP Lemma (LOI):

$$\begin{aligned} \mathcal{P} &\succ 0 \\ \begin{bmatrix} -\gamma I & \mathcal{D}^* & \mathcal{B}^* \mathcal{P} \\ \mathcal{D} & I & \mathcal{C} \\ \mathcal{P} \mathcal{B} & \mathcal{C}^* & \mathcal{A}^* \mathcal{P} + \mathcal{P} \mathcal{A} \end{bmatrix} \prec 0 \end{aligned}$$

Generally, all operators do not inherit properties of a matrix

PI Operators: Integral operators that are parameterized by matrix-valued polynomials

PI operators on
$$\mathbb{R}^m \times L_2^n[a,b]$$

$$\left(\mathcal{P}\begin{bmatrix}P, Q_1\\Q_2, \{R_{0,1,2}\}\end{bmatrix}\begin{bmatrix}x\\\mathbf{z}\end{bmatrix}\right)(s) \coloneqq \begin{bmatrix}Px + \int_a^b Q_1(s)\mathbf{z}(s)ds\\Q_2(s)x + \underbrace{R_0(s)\mathbf{z}(s)ds}_{a} + \underbrace{\int_a^s R_1(s,\eta)\mathbf{z}(\eta)d\eta}_{a} + \underbrace{\int_s^b R_2(s,\eta)\mathbf{z}(\eta)d\eta}_{s} \end{bmatrix}$$

PI operators are closed under

• Composition. We denote
$$\begin{bmatrix} P, Q_1 \\ Q_2, \{R_{0,1,2}\} \end{bmatrix} = \begin{bmatrix} A, B_1 \\ B_2, \{C_{0,1,2}\} \end{bmatrix} \times \begin{bmatrix} M, N_1 \\ N_2, \{S_{0,1,2}\} \end{bmatrix}$$

• Adjoint. We denote $\begin{bmatrix} \hat{P}, \hat{Q}_1 \\ \hat{Q}_2, \{\hat{R}_{0,1,2}\} \end{bmatrix} = \begin{bmatrix} P, Q_1 \\ Q_2, \{R_{0,1,2}\} \end{bmatrix}^*$

• Addition and Concatenation

Algebraic formula that are computable

Theorem

Let a self adjoint PI operator be defined as

$$\begin{array}{l} \bullet \begin{bmatrix} P, & Q \\ Q^{\top}, \{R_{0,1,2}\} \end{bmatrix} := \begin{bmatrix} I, & 0 \\ 0, \{Z_{0,1,2}\} \end{bmatrix}^* \times \begin{bmatrix} P_{11}, & P_{12} \\ P_{12}^{\top}, \{Q_{0,1,2}\} \end{bmatrix} \times \begin{bmatrix} I, & 0 \\ 0, \{Z_{0,1,2}\} \end{bmatrix}, \qquad \{Q_{0,1,2}\} := \{P_{22}, 0, 0\}, \\ \bullet \{Z_{0,1,2}\} := \left\{ \begin{bmatrix} \sqrt{g(s)}Z_{d1}(s) \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{g(s)}Z_{d2}(s, \theta) \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{g(s)}Z_{d2}(s, \theta) \end{bmatrix} \right\}, \\ \text{where } g(s) = (s-a)(b-s) \text{ or } g(s) = 1 \text{ and } Z_{d1} : [a,b] \to \mathbb{R}^{d_1 \times n}, Z_{d2} : [a,b] \times [a,b] \to \mathbb{R}^{d_2 \times n}. \\ \text{Then, the PI operator is positive if and only if the matrix } \begin{bmatrix} P_{11} & P_{12} \\ P_{12}^{\top} & P_{22} \end{bmatrix} \text{ is positive } f(s) = 1 \text{ and } Z_{d1} : [a,b] \to \mathbb{R}^{d_1 \times n}, Z_{d2} : [a,b] \times [a,b] \to \mathbb{R}^{d_2 \times n}. \end{array}$$

Positivity of PI operators can be formulated as positivity of a matrix

PIETOOLS- A MATLAB Parser for PI-Operators

Declaring PI operators

- 1 opvar P: declares a PI operator object
- **2** P.P: A $m \times m$ matrix
- **③** P.Q1, P.Q2: A $m \times n$ and a $n \times m$ matrix valued polynomials in s, θ
- **4** P.R: A structure with entities R_0 , R_1 , and R_2
- **(5** P.R.RO: A $n \times n$ matrix valued polynomial in s
- **(6** P.R.R1, P.R.R2 : $n \times n$ matrix valued polynomials in s, θ

Operation on PI operators

opvar P1 P2

- ① Composition: Pcomp = P1*P2
- 2 Adjoint: Padj = P1'
- **3** Addition: Padd = P1+P2
- Concatenation: Pconc = [P1 P2] or Pconc = [P1; P2]

Example: L_2 induced norm of Volterra integral operators on $L_2[0,1]$

 $\begin{array}{l} \text{minimize } \gamma, \text{ subject to } \mathcal{A}^* \mathcal{A} \leq \gamma, \\ (\mathcal{A} \mathbf{x})(s) := \int_0^s \mathbf{x}(\theta) \mathrm{d} \theta. \end{array}$

1. Declaration of Operator Objects: Using pvar and opvar

» pvar s th gam; » opvar A; A.R.R1 = 1;

2. Initialization:

» prog = sosprogram([s,th],[gam]);

» prog = sossetobj(prog,gam);

- 3. Add Constraint: >> prog = sos_opineq(prog, A'*A-gam);
- 4. Solve the Optimization Problem:

» prog = sossolve(prog); » Gam = sosgetsol(prog, gam);

* S. Shivakumar; A. Das; M. Peet; PIETOOLS: A Matlab Toolbox for Manipulation and Optimization of Partial Integral 12/25 3.12.2019 Operators (ACC 2020)

Can we write PDEs in terms of PI Operators?

Consider the following class of PDEs

$$E(s)\frac{\partial}{\partial t} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = A_0(s) \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} + A_1(s)\frac{\partial}{\partial s} \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} + A_2(s)\frac{\partial^2}{\partial s^2}\mathbf{x}_3 + B(s)u$$
$$y = F\mathbf{x}_b + \int_a^b B(s) \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} ds + \int_a^b C(s)\frac{\partial}{\partial s} \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} ds + Dw.$$

Boundary Condition: Sufficient number of boundary conditions: $B_c \mathbf{x}_b = B_w w$

Solution Space: $\mathbf{x} := col(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ belongs to Hilbert or Sobolev space

The conventional notion of states $\mathbf{x} := \mathsf{col}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \in L_2 imes H^1 imes H^2$

Question: Are x independent? Answer: No (Fundamental Theorem of Calculus)

$$\mathbf{x}_{2}(s) = \mathbf{x}_{2}(a) + \int_{a}^{s} \frac{\partial \mathbf{x}_{2}}{\partial s}(\eta) d\eta \qquad \qquad = \mathcal{P} \frac{\partial \mathbf{x}_{2}}{\partial s}$$
$$\frac{\partial \mathbf{x}_{3}}{\partial s}(s) = \frac{\partial \mathbf{x}_{3}}{\partial s}(a) + \int_{a}^{s} \frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}(\eta) d\eta \qquad \qquad = \mathcal{Q} \frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}$$
$$\mathbf{x}_{3}(s) = \mathbf{x}_{3}(a) + s \frac{\partial \mathbf{x}_{3}}{\partial s}(a) + \int_{a}^{s} (s - \eta) \frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}(\eta) d\eta \qquad \qquad = \mathcal{R} \frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}$$

What did we gain?

- $\mathcal{P}, \mathcal{Q}, \mathcal{R}$ are PI operators
- Boundary conditions got invoked inside the PI operators

New states: $\mathbf{z} := \mathsf{col}\left(\mathbf{x}_1, \frac{\partial \mathbf{x}_2}{\partial s}, \frac{\partial^2 \mathbf{x}_3}{\partial s^2}\right) \in L_2 \times L_2 \times L_2$

14 / 25 3.12.2019

The conventional notion of states $\mathbf{x} := \operatorname{col}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \in L_2 \times H^1 \times H^2$

Question: Are x independent? Answer: No (Fundamental Theorem of Calculus)

$$\begin{aligned} \mathbf{x}_{2}(s) &= \mathbf{x}_{2}(a) + \int_{a}^{s} \frac{\partial \mathbf{x}_{2}}{\partial s}(\eta) d\eta &= \mathcal{P} \frac{\partial \mathbf{x}_{2}}{\partial s} \\ \frac{\partial \mathbf{x}_{3}}{\partial s}(s) &= \frac{\partial \mathbf{x}_{3}}{\partial s}(a) + \int_{a}^{s} \frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}(\eta) d\eta &= \mathcal{Q} \frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}} \\ \mathbf{x}_{3}(s) &= \mathbf{x}_{3}(a) + s \frac{\partial \mathbf{x}_{3}}{\partial s}(a) + \int_{a}^{s} (s - \eta) \frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}}(\eta) d\eta &= \mathcal{R} \frac{\partial^{2} \mathbf{x}_{3}}{\partial s^{2}} \end{aligned}$$

What did we gain?

- $\bullet \ \mathcal{P}, \mathcal{Q}, \mathcal{R} \ \text{are Pl operators}$
- Boundary conditions got invoked inside the PI operators

New states:
$$\mathbf{z} := \operatorname{col}\left(\mathbf{x}_1, \frac{\partial \mathbf{x}_2}{\partial s}, \frac{\partial^2 \mathbf{x}_3}{\partial s^2}\right) \in L_2 \times L_2 \times L_2$$

Introducing
$$\mathbf{z} := \mathsf{col}\Big(\mathbf{x}_1, \frac{\partial \mathbf{x}_2}{\partial s}, \frac{\partial^2 \mathbf{x}_3}{\partial s^2}\Big)$$
 as a new state instead of $\mathbf{x} := \mathsf{col}\Big(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$

Classical Representation of PDEs:

PI Representation of PDEs:

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathcal{A}\mathbf{x}(t) + \mathcal{B}u(t), \\ y(t) &= \mathcal{C}\mathbf{x}(t) + \mathcal{D}u(t), \\ \text{Boundary Conditions} \end{split}$$

 $\mathcal{T}\dot{\mathbf{z}}(t) = \mathcal{A}_f \mathbf{z}(t) + \mathcal{B}_f u(t),$ $y(t) = \mathcal{C}_f \mathbf{z}(t) + \mathcal{D}_f u(t),$

Both representations are behaviourally equivalent under the transformation $\mathbf{x} = \mathcal{T} \mathbf{z}$

We have formula for this transformation!

* M. Peet; S. Shivakumar, A. Das; S. Weiland; Discussion Paper: A New Mathematical Framework for Representation and Analysis of Coupled PDEs (CDPS-CPDE, 2019) For linear ODEs with inputs and outputs,

e.g. Matrix-valued KYP Lemma (LMI):

$\dot{x}(t) = Ax(t) + Bu(t),$	$P \succ 0$
y(t) = Cx(t) + Du(t),	$\begin{bmatrix} -\gamma I & D^\top & B^\top P \end{bmatrix}$
A, B, C, D are matrices	$\begin{vmatrix} D & I & C \\ PB & C^{\top} & A^{\top}P + PA \end{vmatrix} \prec 0.$

For linear PI equations with inputs and outputs, e.g. Operator-valued KYP Lemma (LOI):

$\dot{\mathbf{x}}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}u(t),$	$\mathcal{P} \succ 0$		
$y(t) = \mathcal{C}\mathbf{x}(t) + \mathcal{D}u(t),$	$\begin{bmatrix} -\gamma I & \mathcal{D}^* \end{bmatrix}$	$\mathcal{B}^*\mathcal{P}$	
${\cal A}$, ${\cal B}$, ${\cal C}$ and ${\cal D}$ are PI operators	$egin{array}{ccc} \mathcal{D} & I \ \mathcal{PB} & \mathcal{C}^* \end{array}$	$\mathcal{C} \ \mathcal{A}^*\mathcal{P} + \mathcal{P}\mathcal{A}$	$\prec 0$

Analogous to matrices, PI operators allow us to solve KYP using LMIs

PI Representation of PDEs:

 $\begin{aligned} \mathcal{T}\dot{\mathbf{z}}(t) &= \mathcal{A}_f \mathbf{z}(t) + \mathcal{B}_f u(t), \\ y(t) &= \mathcal{C}_f \mathbf{z}(t) + \mathcal{D}_f u(t), \end{aligned}$

Steps to Follow

- 1 Express the dynamics in terms of PI operators
- **2** Construct quadratic Lypunov Functions as $V(\mathbf{z}) := \langle \mathbf{z}, \mathcal{T}^* \mathcal{PT} \mathbf{z} \rangle$
- **3** Establish the inequalities by taking time-derivative of $V(\mathbf{z})$
- 4 Enforce operator positivity/ negativity of PI operators
- **6** Solve LMIs using Semidefinite programming in PIETOOLS

 \mathcal{H}_{∞} Optimal State Estimator for Infinite Dimensional System

 $\mathcal{T}\dot{\mathbf{z}}(t) = \mathcal{A}_f \mathbf{z}(t) + \mathcal{B}_f w(t)$ e(t)r(t) $y(t) = \mathcal{C}_f \mathbf{z}(t) + \mathcal{D}_f w(t)$ w(t) $r(t) = \mathcal{E}_f \mathbf{z}(t)$ $\mathcal{T}\dot{\hat{\mathbf{z}}}(t) = \mathcal{A}_f \hat{\mathbf{z}}(t) + \mathcal{L}(\hat{y}(t) - y(t))$ $\hat{y}(t) = \mathcal{C}_f \hat{\mathbf{z}}(t)$ $\hat{r}(t)$ y(t) $\hat{r}(t) = \mathcal{E}_f \hat{\mathbf{z}}(t)$

TU/e

<u>Minimize</u> γ such that $||\hat{r} - r|| \leq \sqrt{\gamma} ||w||$

$$\begin{array}{ll} \min \gamma, \mbox{ s.t. } \mathcal{P} \succ 0 & \mbox{ with } \mathcal{L} = \mathcal{P}^{-1} \mathcal{Z} \\ & \left[\begin{matrix} \mathcal{T}^* (\mathcal{P} \mathcal{A}_f + \mathcal{Z} \mathcal{C}_f) + (\mathcal{P} \mathcal{A}_f + \mathcal{Z} \mathcal{C}_f)^* \mathcal{T} & -\mathcal{T}^* (\mathcal{P} \mathcal{B}_f + \mathcal{Z} \mathcal{D}_f) & \mathcal{E}_f^* \\ & -(\mathcal{P} \mathcal{B}_f + \mathcal{Z} \mathcal{D}_f)^* \mathcal{T} & -\gamma I & 0 \\ & \mathcal{E}_f & 0 & I \end{matrix} \right] \prec 0. \end{array}$$

PDE

$$\frac{\partial^2 u(s,t)}{\partial t^2} = \frac{\partial^2 u(s,t)}{\partial s^2} + B_1(s)w(t)$$

Boundary Conditions

Minimize the effect of w(t) on the estimation error $z_e(t) = \hat{z}(t) - z(t)$

A well-posed dynamic network of infinite dimensional models.

1 A finite and connected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

2 An adjacency matrix A.

3 Every node $\mathcal{N}_i = (\mathcal{S}_i, \mathcal{J}_i, \mathcal{P}_i)$

4 Every edge $\mathcal{E}_{i,j} = (\mathcal{S}_{i,j}^I, \mathcal{M}_{i,j}^I).$

In Particular:

- $\mathcal{N}_i \in \mathcal{N}$ is governed by a set of PDEs or ODEs on a specific domain and under boundary conditions
- $\mathcal{E}_{i,j} \in \mathcal{E}$ denotes the interconnection of adjacent nodes in terms of coupling boundary conditions (for PDEs), algebraic relations (for ODEs)

*A. Das; S. Weiland; L. Iapichino; Model Approximation of Spatially Interconnected Thermo-Fluidics (ECC-2018) 20/25 3.12.2019 Upscaling is Easy in Graph-Theoretic Framework!

Ink inlet Ink return L1 9 L2 **DM**0 L31 DM1 L32 10 NP1 NP2 TU/e

Use PI representation of PDE-ODE coupled system

*A. Das; M. Peet; S.Weiland; LMI-Based Synthesis of Coupled PDE-ODE Systems (IEEE TAC-under review)

Tool to apply state-space control theory for PDE-ODE models

Remarks

- A prima-facie verifiable tools for analysis and control of PDE- ODE, time-delay models
- Scalable and polynomial time executable
- Size of the LMI depends on the parametrization of PI operators (upto 20 PDEs in real time)

Future Scope

- Extension to higher spatial dimension- more book-keeping
- Discretization and MOR of PI not yet explored
- Taking robustness into account (in terms of parametric uncertainty, unmodeled dynamics)- **very little work done**
- Explore distributed control (many controllers under specific communication topology)- No work available for PDEs
- Extension to non-linear PDEs (ideas of IQC, multipliers)- Holy grail

Some Relevant Papers

(1) A. Das et. al. (ECC, 2018) : 'Model Approximation of Spatially Interconnected Thermo-Fluidics'

- M. Peet et. al. (CDPS-CPDE, 2019) : 'Discussion Paper: A New Mathematical Framework for Representation and Analysis of Coupled PDEs'
- $\textcircled{\sc 3}$ A. Das et. al. (CDC, 2019): ' \mathcal{H}_∞ Optimal Estimation of Linear PDE Systems'
- **4** S. Shivakumar et. al. (CDC, 2019): 'Generalized Input-Output Properties of PDE-ODE Systems'
- **6** A. Das et. al. (IEEE TAC, under review): 'LMI-Based Synthesis of Coupled PDE-ODE Systems'
- 6 A. Das et. al. (IEEE TCST, under review): 'Soft Sensor Based In Situ Control of Inkjet Printhead'
- **Ø** M. Peet (Automatica, Accepted): 'Modeling Networked and Time-Delay Systems: DDE, DDF, PIEs'

Thank You!

What to do if no additional actuator or sensor is allowed?

Use the already installed piezo-electric element at every individual nozzles

- Use self-sensing capability of piezo-electric elements as soft-sensor at every nozzle
- Use the piezo-electric elements inside non-jetting (idle) nozzles as heating actuators