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Application: Inkjet Printing

Inkjet Printing
Ink is jetted on the substrate medium in a predefined pattern
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Application: Inkjet Printing

Inkjet Printing
Ink is jetted on the substrate medium in a predefined pattern

* J. R. Castrejón-Pita; S. J. Willis; Inconsistency in Ink Properties in Printing (Review of Scientific Instruments-2015)
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Application: Inkjet Printing

Thermal effects on printhead.
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Requirements
• No possibility of additional sensor or actuators
• Good print-quality and high through-put
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Objective
Design a feedback controller that minimizes the gradient of ink-temperature among nozzles without

placing additional sensors and actuators?
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Properties of The Model
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Common Aspects:
1 Spatial interconnection among multi-physics processes

2 Coupled multi-variable spatio-temporal dynamics (PDEs) and lumped dynamics (ODEs)

3 Energy exchange of interacting physical phenomena over boundaries

4 Requires guaranteed performance in the presence of unmeasured physical quantities
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How Do We Typically Solve?

PDE

ODE

ODE

ODE

Infinite Dimensional 
Model

High-Fidelity Finite 
Dimensional Model

Few aspects of discretization:
1 We have made significant progress due to HPC

2 Curse of dimensionality: moder reduction is a must

3 Plant and model are not the same
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Few aspects of infinite dimensional approach:
1 Plant and model are the same

2 Methods are problem specific, not scalable

3 Beautiful mathematics, questionable tractability

How to bridge ideas from finite dimensions to PDEs ?6 / 25 3.12.2019



Today’s Discussion

A new framework for analysis and control of infinite dimensional systems

Specifically
1 Solved using LMIs (polynomial time executable)

2 Generic and scalable (plug the model, execute the result)

3 Does not depend on conventional discretization technique
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Analysis of Linear Systems: Finite vs Infinite Dimensional Systems

Why infinite dimensional systems and finite dimensional linear systems are not same?

For linear ODEs with inputs and outputs,

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

A,B,C,D are matrices

e.g. Matrix-valued KYP Lemma (LMI):

P � 0−γI D> B>P
D I C
PB C> A>P + PA

 ≺ 0.

For linear PDEs with inputs and outputs,

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) +Du(t),

A, B, C and D are differential or unbounded
operators

e.g. Operator-valued KYP Lemma (LOI):

P � 0−γI D∗ B∗P
D I C
PB C∗ A∗P + PA

 ≺ 0

Generally, all operators do not inherit properties of a matrix
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Algebra of Partial Integral (PI) Operators

PI Operators: Integral operators that are parameterized by matrix-valued polynomials
PI operators on Rm × Ln

2 [a, b]

(
P
[
P , Q1
Q2,{R0,1,2}

] [
x
z

])
(s) :=


Px+

b∫
a

Q1(s)z(s)ds

Q2(s)x+R0(s)z(s)ds︸ ︷︷ ︸+
∫ s

a

R1(s, η)z(η)dη︸ ︷︷ ︸+
∫ b

s

R2(s, η)z(η)dη︸ ︷︷ ︸


PI operators are closed under

• Composition. We denote
[
P, Q1
Q2,{R0,1,2}

]
=
[
A, B1
B2,{C0,1,2}

]
×
[
M, N1
N2,{S0,1,2}

]

• Adjoint. We denote
[
P̂ , Q̂1

Q̂2,
{
R̂0,1,2

}] =
[
P, Q1
Q2,{R0,1,2}

]∗
• Addition and Concatenation

Algebraic formula that are computable
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The Positivity of PI Operators as LMIs

Theorem
Let a self adjoint PI operator be defined as

•
[
P, Q
Q>,{R0,1,2}

]
:=
[
I, 0
0, {Z0,1,2}

]∗
×
[
P11, P12
P>12,{Q0,1,2}

]
×
[
I, 0
0, {Z0,1,2}

]
, {Q0,1,2} := {P22, 0, 0},

• {Z0,1,2} :=


√g(s)Zd1(s)

0
0

 ,
 0√

g(s)Zd2(s, θ)
0

 ,
 0

0√
g(s)Zd2(s, θ)

 ,

where g(s) = (s− a)(b− s) or g(s) = 1 and Zd1 : [a, b]→ Rd1×n, Zd2 : [a, b]× [a, b]→ Rd2×n.

Then, the PI operator is positive if and only if the matrix
[
P11 P12
P>12 P22

]
is positive

Positivity of PI operators can be formulated as positivity of a matrix
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PIETOOLS- A MATLAB Parser for PI-Operators
Declaring PI operators

1 opvar P: declares a PI operator object

2 P.P: A m×m matrix

3 P.Q1, P.Q2: A m× n and a n×m matrix valued polynomials in s, θ

4 P.R: A structure with entities R0, R1, and R2

5 P.R.R0: A n× n matrix valued polynomial in s

6 P.R.R1, P.R.R2 : n× n matrix valued polynomials in s, θ

Operation on PI operators
opvar P1 P2

1 Composition: Pcomp = P1*P2

2 Adjoint: Padj = P1’

3 Addition: Padd = P1+P2

4 Concatenation: Pconc = [P1 P2] or Pconc = [P1; P2]
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PIETOOLS- A MATLAB Parser for PI-Operators

Example: L2 induced norm of Volterra integral operators on L2[0, 1]
minimize γ, subject to A∗A ≤ γ,

(Ax)(s) :=
∫ s

0 x(θ)dθ.

1. Declaration of Operator Objects: Using pvar and opvar

» pvar s th gam;

» opvar A; A.R.R1 = 1;

2. Initialization:
» prog = sosprogram([s,th],[gam]);

» prog = sossetobj(prog,gam);

3. Add Constraint: » prog = sos_opineq(prog, A’*A-gam);
4. Solve the Optimization Problem:

» prog = sossolve(prog);

» Gam = sosgetsol(prog, gam);

* S. Shivakumar; A. Das; M. Peet; PIETOOLS: A Matlab Toolbox for Manipulation and Optimization of Partial Integral
Operators (ACC 2020)
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Analysis and Synthesis in Infinite Dimensions Using PI Operators

Can we write PDEs in terms of PI Operators?

Consider the following class of PDEs

E(s) ∂
∂t

x1
x2
x3

 =A0(s)

x1
x2
x3

+A1(s) ∂
∂s

[
x2
x3

]
+A2(s) ∂

2

∂s2 x3 +B(s)w,

y =Fxb +
b∫

a

B(s)

x1
x2
x3

 ds+
b∫

a

C(s) ∂
∂s

[
x2
x3

]
ds+Dw.

Boundary Condition: Sufficient number of boundary conditions: Bcxb = Bww

Solution Space: x := col(x1,x2,x3) belongs to Hilbert or Sobolev space
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Representation of PDEs Using PI Operators
The conventional notion of states x := col

(
x1,x2,x3

)
∈ L2 ×H1 ×H2

Question: Are x independent? Answer: No (Fundamental Theorem of Calculus)

x2(s) = x2(a) +
∫ s

a

∂x2
∂s

(η)dη = P ∂x2
∂s

∂x3
∂s

(s) = ∂x3
∂s

(a) +
∫ s

a

∂2x3
∂s2 (η)dη = Q∂

2x3
∂s2

x3(s) = x3(a) + s
∂x3
∂s

(a) +
∫ s

a
(s− η)∂

2x3
∂s2 (η)dη = R∂

2x3
∂s2

What did we gain?
• P,Q,R are PI operators
• Boundary conditions got invoked inside the PI operators

New states: z := col
(
x1,

∂x2
∂s ,

∂2x3
∂s2

)
∈ L2 × L2 × L2
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Representation of PDEs Using PI Operators

Introducing z := col
(

x1,
∂x2
∂s ,

∂2x3
∂s2

)
as a new state instead of x := col

(
x1,x2,x3

)
Classical Representation of PDEs:

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) +Du(t),
Boundary Conditions

PI Representation of PDEs:

T ż(t) = Af z(t) + Bfu(t),
y(t) = Cf z(t) +Dfu(t),

Both representations are behaviourally equivalent under the transformation x = T z

We have formula for this transformation!

* M. Peet; S. Shivakumar, A. Das; S. Weiland; Discussion Paper: A New Mathematical Framework for Representation
and Analysis of Coupled PDEs (CDPS-CPDE, 2019)
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Analysis of Linear Systems: Finite vs Infinite Dimensional Systems

For linear ODEs with inputs and outputs,

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

A,B,C,D are matrices

e.g. Matrix-valued KYP Lemma (LMI):

P � 0−γI D> B>P
D I C
PB C> A>P + PA

 ≺ 0.

For linear PI equations with inputs and outputs,

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) +Du(t),

A, B, C and D are PI operators

e.g. Operator-valued KYP Lemma (LOI):

P � 0−γI D∗ B∗P
D I C
PB C∗ A∗P + PA

 ≺ 0

Analogous to matrices, PI operators allow us to solve KYP using LMIs
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Analyze Stability, Passivity, Synthesize Estimator/ Controller

PI Representation of PDEs:

T ż(t) = Af z(t) + Bfu(t),
y(t) = Cf z(t) +Dfu(t),

Steps to Follow

1 Express the dynamics in terms of PI operators

2 Construct quadratic Lypunov Functions as V (z) := 〈z, T ∗PT z〉

3 Establish the inequalities by taking time-derivative of V (z)

4 Enforce operator positivity/ negativity of PI operators

5 Solve LMIs using Semidefinite programming in PIETOOLS
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H∞ Optimal State Estimator for Infinite Dimensional System

T ż(t) = Afz(t) + Bfw(t)

y(t) = Cfz(t) +Dfw(t)

r(t) = Efz(t)

T ˙̂z(t) = Af ẑ(t) + L(ŷ(t)− y(t))

ŷ(t) = Cf ẑ(t)

r̂(t) = Ef ẑ(t)

−
w(t)

y(t)r̂(t)

r(t)e(t)

Minimize γ such that ||r̂ − r|| ≤ √γ||w||

min γ, s.t. P � 0 with L = P−1ZT ∗(PAf + ZCf ) + (PAf + ZCf )∗T −T ∗(PBf + ZDf ) E∗f
−(PBf + ZDf )∗T −γI 0

Ef 0 I

 ≺ 0.
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Example: H∞ Optimal Estimator for Infinite Dimensional System

PDE

∂2u(s, t)
∂t2

= ∂2u(s, t)
∂s2 +B1(s)w(t)

Boundary Conditions

u(0, t) = 0,
∂u(s, t)
∂s

|s=L = −K∂u(s, t)
∂t

|s=L

Sensor

Regulated 
Output 

y(t) =

b∫

a

∂u(s, t)

∂t
ds+D1w(t)

w(t)

z(t) =
∂u(s, t)

∂t
|s=L

Minimize the effect of w(t) on the estimation error ze(t) = ẑ(t)− z(t)
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Example: H∞ Optimal Estimator for Infinite Dimensional System

Sensor

Regulated 
Output 

y(t) =

b∫

a

∂u(s, t)

∂t
ds+D1w(t)

w(t)

z(t) =
∂u(s, t)

∂t
|s=L
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Back to The Application: Modeling Inkjet Printhead

N1N1

SiSi
N2N2 N3N3

N6N6 N5N5 N4N4

N7N7 NM−1NM−1 NMNM

BI
i,j

Bext
i Ei,j A well-posed dynamic network of infinite

dimensional models.

1 A finite and connected graph G = (N , E).

2 An adjacency matrix A.

3 Every node Ni = (Si,Ji,Pi)

4 Every edge Ei,j = (SI
i,j ,MI

i,j).

In Particular:
• Ni ∈ N is governed by a set of PDEs or ODEs on a specific domain and under boundary
conditions
• Ei,j ∈ E denotes the interconnection of adjacent nodes in terms of coupling boundary
conditions (for PDEs), algebraic relations (for ODEs)

*A. Das; S. Weiland; L. Iapichino; Model Approximation of Spatially Interconnected Thermo-Fluidics (ECC-2018)
20 / 25 3.12.2019



Upscaling is Easy in Graph-Theoretic Framework!
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Upscaling is Easy in Graph-Theoretic Framework!
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Thermal Effects in Printing As Coupled PDE-ODE Systems




P1

·
·

·
PM




M

u
d

y

z

v w

22 / 25 3.12.2019



Thermal Effects in Printing As Coupled PDE-ODE Systems
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Thermal Effects in Printing As Coupled PDE-ODE Systems
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Use PI representation of PDE-ODE coupled system

*A. Das; M. Peet; S.Weiland; LMI-Based Synthesis of Coupled PDE-ODE Systems (IEEE TAC-under review)
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Concluding Remarks

Tool to apply state-space control theory for PDE-ODE models
Remarks
• A prima-facie verifiable tools for analysis and control of PDE- ODE, time-delay models
• Scalable and polynomial time executable
• Size of the LMI depends on the parametrization of PI operators (upto 20 PDEs in real time)

Future Scope
• Extension to higher spatial dimension- more book-keeping
• Discretization and MOR of PI - not yet explored
• Taking robustness into account (in terms of parametric uncertainty, unmodeled dynamics)- very
little work done
• Explore distributed control (many controllers under specific communication topology)- No work
available for PDEs
• Extension to non-linear PDEs (ideas of IQC, multipliers)- Holy grail

*A. Das; S. Shivakumar; M. Peet; S. Weiland; LMI-Based Synthesis of Coupled PDE-ODE Systems (IEEE TAC-Under
Review)
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Thank You!



Application: Minimizing Temperature Gradient Among Nozzles
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What to do if no additional actuator or sensor is allowed?
Use the already installed piezo-electric element at every individual nozzles

• Use self-sensing capability of piezo-electric elements as soft-sensor at every nozzle
• Use the piezo-electric elements inside non-jetting (idle) nozzles as heating actuators
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