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Abstract

Collective decision-making refers to a process in which the agents of a community
exchange opinions with the objective of reaching a common decision. It is often
assumed that a collective decision is reached through collaboration among the
individuals. However in many contexts, concerning for instance collective human
behavior, it is more realistic to assume that the agents can collaborate or compete
with each other. In this case, different types of collective behavior can be observed.
This thesis investigates collective decision-making problems in multiagent systems,
both in the case of collaborative and of antagonistic interactions.

The first problem studied in the thesis is a special instance of the consensus
problem, denoted “interval consensus” in this work. It consists in letting the agents
impose constraints on the possible common consensus value. It is shown that
introducing saturated nonlinearities in the decision-making dynamics to describe
how the agents express their opinions effectively allows the agents to influence
the achievable consensus value and steer it to the intersection of all the intervals
imposed by the agents.

A second class of collective decision-making models discussed in the thesis is
obtained by replacing the saturations with sigmoidal nonlinearities. This nonlin-
ear interconnected model is first investigated in the collaborative case and then in
the antagonistic case, represented as a signed graph of interactions. In both cases,
it is shown that the behavior of the model can be described by means of bifurca-
tion analysis, with the equilibria of the system encoding the possible decisions for
the community. A scalar positive parameter, denoted “social effort”, is added to
the model to represent the strength of commitment between the agents, and plays
the role of bifurcation parameter in the analysis. It is shown that if the social
effort is small, then the community is in a deadlock situation (i.e., no decision is
taken), while if the agents have the “right” amount of commitment two alternative
consensus decision states for the community are achieved. However, by further in-
creasing the social effort, the agents may fall in a situation of “overcommitment”
where multiple (more than 2) decisions are possible. When antagonistic interac-
tions between the agents are taken into account, they may lead to conflicts or
social tensions during the decision-making process, which can be quantified by the
notion of “frustration” of the signed network representing the community. The aim
is to understand how the presence of antagonism (represented by the amount of
frustration of the signed network) influences the collective decision-making process.
It is shown that, while the qualitative behavior of the system does not change, the
value of social effort required from the agents to break the deadlock (i.e., the value
for which the bifurcation is crossed) increases with the frustration of the signed
network: the higher the frustration, the higher the required social commitment.

A natural context to apply these results is that of political decision-making.
In particular it is shown in the thesis how the government formation process in
parliamentary democracies can be modeled as a collective decision-making system,
where the agents are the parliamentary members, the decision is the vote of con-
fidence they cast to a candidate cabinet coalition, and the social effort parameter
is a proxy for the duration of the government negotiation talks. A signed network
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captures the alliances/rivalries between the political parties in the parliament. The
idea is that the frustration of the parliamentary networks should correlate well with
the duration of the government negotiation, and it is supported by the analysis of
the legislative elections in 29 European countries in the last 40 years.

The final contribution of this thesis is an analysis of the structure of (signed)
Laplacian matrices and of their pseudoinverses. It is shown that the pseudoin-
verse of a Laplacian is in general a signed Laplacian, and in particular that the
set of eventually exponentially positive Laplacian matrices (i.e., matrices whose
exponential is a matrix with negative entries which becomes and stays positive at
a certain power) is closed under stability and matrix pseudoinversion.



Popularvetenskaplig sammanfattning

Kollektivt beslutsfattande kan definieras som en process déar agenter i en grupp
utbyter asikter med maélet att fatta ett beslut. Det antas ofta att ett kollektivt
beslut nés genom samarbete mellan individerna. I ménga fall, till exempel mansk-
ligt kollektivt beteende, ar det ddremot mer realistiskt att anta att agenterna kan
béade samarbeta och motverka varandra. I dessa fall kan olika typer av kollek-
tivt beteende observeras. Denna avhandling underséker kollektivt beslutsfattande
i fleragentssystem, bade med kollaborativa och antagonistiska interaktioner.

Forst studeras ”intervallkonsensus”, ett sdrskilt fall av konsensusproblemet dar
agenterna tillats begransa det mojliga konsensusvirdet. Det visas att genom att
introducera begransningar i hur agenterna uttrycker sina asikter i beslutfattnings-
processen blir det mojligt for agenterna att paverka det mojliga konsensusvéardet
och styra det till ett virde som accepteras av alla agenter.

En andra klass av kollektiva beslutfattningsmodeller som diskuteras i avhand-
lingen fas genom att ersitta de harda begrdnsningarna med mjukare (S-formade
olinjériteter), och utéka modellen med en parameter kallad "social anstrangning”
som representerar styrkan hos engagemanget mellan agenterna. Den sammankopp-
lade modellen undersoks forst i det kollaborativa fallet och sedan i det antagonistis-
ka fallet. I grafen som beskriver gruppen representeras kollaborativa och antagonis-
tiska interaktioner av bagar med positiva respektive negativa vikter. Malet ar att
forsta hur systemets beteende fordndras nér parametern for social anstrangning va-
rieras. [ bada fallen visas det att om den sociala anstréngningen &r liten s& hamnar
gruppen i ett dédlége, men att om agenterna har lagom méingd engagemang sa kan
tva alternativa konsensusbeslutstillstand fér gruppen uppnas. Genom att ytterli-
gare Oka den sociala anstridngningen kan agenterna daremot bli ”"6verengagerade”
vilket leder till fler &n tva mojliga beslut. Nar antagonistiska kopplingar mellan
agenterna beaktas kan dessa leda till social spdnning under beslutfattningspro-
cessen, vilket kan kvantifieras av ”frustrationen” i det nétverk som representerar
gruppen. Malet &r att forstd hur nirvaron av antagonism (representerad av ming-
den frustration) influerar den kollektiva beslutfattningsprocessen. Det visas att
dven om systemets kvalitativa beteende inte fordndras, sé okar den méngd social
anstrdngning som kravs av agenterna for att bryta dodlaget med frustrationen i
nétverket: ju storre frustration desto storre socialt engagemang kravs.

Politiskt beslutsfattande &r ett exempel dér resultaten i avhandling kan tillam-
pas. Det visas hur regeringsbildningsprocessen i parlamentariska demokratier kan
modelleras som ett kollektivt beslutfattningssystem dér agenterna &r parlamenta-
rikerna, beslutet &r fortroenerdsten de ger till en kandiderande regeringskoalition,
och den sociala anstrdngningen representeras av regeringsforhandlingarnas langd.
Parlamentet kan modelleras som en graf dér noderna representerar parlamentari-
kerna och tecknet pa bagarnas vikter representerar allianser och rivaliteter mellan
deras respektive partier. Hypotesen ar att frustrationen i det parlamentariska nét-
verket korrelerar vil med regeringsforhandlingarnas ldngd, vilket stods av en analys
av valen i 29 europeiska ldnder under de senaste 40 aren.

Det sista bidraget i denna avhandling &r en analys av strukturen hos tecken-
grafer (d.v.s. grafer som kan ha bade positiva och negativa bagvikter), och av de

vii
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associerade laplacematriser och deras pseudoinverser. Pseudoinversen av en lapla-
cematris har manga tillimpningar vilket gor det viktigt att férsta dess egenskaper.
Det visas att pseudomatrisen generellt ar en laplacematris svarandes mot tecken-
graf, och villkor som garanterar stabilitet foreslas.
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Introduction

The idea of networks of interacting agents exchanging opinions or preferences in
order to achieve a common decision as a community is not specific of a particular
field or discipline, and examples of collective behaviors can be observed in every-
day life. Typical examples range from collective behaviors in animal groups, such
as selection of nest location, food source or migration mechanisms [1-4], to coor-
dination and formation control or task-allocation problems in robotics [5-7], to
opinion formation [8, 9]. In many of these cases, an agreement is reached through
collaboration between the agents. However, there are other scenarios, such as e.g.
social networks, trade markets, sport games, or parliamentary systems, where com-
petition among the agents is intrinsic and unavoidable [10], hence the outcome of
the interaction is less clear and the fact of achieving some form of agreement is
not guaranteed.

Focusing on opinion dynamics models, i.e., on exchange of opinions among
agents on a “social network”, in order to describe a collective decision-making
process two elements are required: a framework able to capture how the individuals
represent their opinions and communicate with each other, and a dynamical model
describing how the opinions of the agents evolve in time. The natural choice for the
framework is a state space model with state variables representing the opinions and
a graph representing the interactions among the agents. As for the dynamics, many
choices have been proposed in the literature in the last fifty years, as reviewed for
instance in [11, 12], ranging from linear to nonlinear, from continuous- to discrete-
time, from deterministic to probabilistic, etc.

Given a community of n agents, represented as a network G, a state variable
x;(t) € R (to ease the notation, the time-dependence is omitted hereafter) is as-
signed to each node ¢ of the network to represent the opinion of agent ¢ (at time
t). In continuous-time, the evolution of the opinions of the agents in the network
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G can be described by a dynamical model in the generic form

&= f(z)=[fi(z) - fala)] (1.1)

where x = [1 --- x,]7 € R is the vector of opinions, and f: R™ — R is a vector
field which depends on the structure of the network G. The possible decisions for
the community can be encoded in the equilibria of the system. When f(x) = — Lz,
where L is the Laplacian matrix of the network G, then the equilibria of the system
(1.1) have all equal components. These types of equilibria are called consensus,
and have been extensively studied in the literature, see e.g. [6, 11, 13].

Linear models like the one leading to consensus may fail to capture more com-
plex behaviors, and nonlinearities are sometimes included in an attempt to make
the models more realistic. However, the adoption of nonlinear models means that
the dynamics may exhibit new phenomena, such as multiple equilibria, periodic
orbits, and bifurcations. For instance, a class of nonlinear interconnected models
that combines consensus with saturated and sigmoidal nonlinearities is proposed
in [4]. It has the following structure:

& =—Azx+rmAY(x) (1.2)

where A = [a;;] € R"*™ is the adjacency matrix of the graph G, A = diag{d1,...,d,},
with §; = Z?Zl a;; for all 7, is the diagonal term representing the weighted in-
degree, ™ > 0 is a positive scalar parameter, and v (z) = [¢1(x1) -~ ¥n(2n)]T is
a vector of sigmoidal and saturated nonlinearities, see Fig. 1.1. By construction,
in this model the linearization at the origin (for 7 = 1) corresponds to the graph
Laplacian L = A — A. The model (1.2) is considered in paper A of part II of
this thesis for the case of saturation nonlinearities, and in paper B for the case of
sigmoidal nonlinearities.

The interaction graph G considered in the model (1.1) (and (1.2)) typically
has edges with nonnegative weights, which capture the fact that the agents are
collaborating. A natural way to extend this model to the case of agents that
compete is to consider signed graphs, i.e., graphs whose edges have positive or
negative weight [14]: a positive edge indicates cooperation (or friendship, trust)
while a negative edge competition (or antagonism, distrust). A notion that is often
used when dealing with signed graphs is that of structural balance, which captures
the idea that no social tension is present at a network level even if antagonism is
present (at a local level) between the agents. In particular, a signed graph is
structurally balanced if its agents can be divided into two subgroups such that
the agents in each subgroup are mutual friends (meaning that they are linked by
edges with positive weight), and the agents belonging to different subgroups are
rivals (linked by edges with negative weight) [15, 16]. A closely related notion is
that of frustration of a signed graph, a concept introduced to measure its distance
from a structurally balanced state [17, 18] (see also [19] for an overview of the
different measures proposed in the literature to estimate the level of imbalance a
of signed graph): a signed graph is structurally balanced if and only if it has zero
frustration.

In the context of multiagent dynamics, the notion of structural balance is
strictly related to that of monotone systems (or order preserving systems) [20], and
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agent 7 neighbors of ¢ ;

Figure 1.1: Representation of a collective decision-making process, described as a
nonlinear system over (signed) networks, see (1.2). (a): A community of agents
is modeled as a graph of interactions, which may be unsigned/cooperative (left)
or signed (right). (b): Nonlinear functions t;(-), ¢ = 1,...,n, represent how each
agent ¢ transmits its opinion x; to its neighbors in the network. The nonlinearities
considered in this work are saturated and monotonically increasing.

the notion of frustration to that of distance to monotonicity [21]. In particular, for
nonnegative graphs G with saturated/sigmoidal nonlinearities, the model (1.2) is
a so-called cooperative system, while when G is signed and structurally balanced
then (1.2) is a monotone system.

Real-world signed networks, from e.g., biological networks [18, 21, 22] to social
networks [23, 24] and (multi-party) parliamentary networks [25], are in general not
structurally balanced. For this reason, it is relevant to understand how the antago-
nism present in the signed networks affects the collective decision-making process.
In paper C of part IT of this thesis, the model (1.2) is extended to include the case
in which the graph G is signed. The difference is that the adjacency matrix A
of G is now a signed matrix, with the sign of each element (41 or —1) represent-
ing the type of interaction (friendly/trust/alliance or unfriendly/distrust/rivalry),
and the absolute value the amount of trust/distrust between the corresponding
agents. Similarly, A = diag{dy,...,0n} is still a weighted in-degree matrix, but
now with §; = Z?:l ‘aij| for all . Under these assumptions, the linearization of
the model (1.2) at the origin corresponds to a signed version of the Laplacian [16].
In particular, the system (1.2) is monotone if and only if the graph G is structurally
balanced. Consequently, when G is not structurally balanced, its dynamics is not
monotone and hence in general more complicated to understand. In papers C and
D it is shown that the notion of frustration can be used to get some insight into
the behavior of the system (1.2).
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Figure 1.2: Duration of government negotiations (calculated as number of days
between the election date and the date the government is sworn in) in selected
European countries in the last 40 years (see paper D).

Example: Political Decision-Making

The government formation process in countries with a parliamentary system is a
good example of collective decision-making applied to the field of Political Sciences.
Briefly, the process starts with a legislative election after which each political party
receives a certain number of seats in the parliament, depending on the number of
votes gained at the election. In case of no clear winner, i.e., when no party or
coalition has managed to secure a majority in the parliament, a negotiation starts
between the political parties. The process concludes with the swearing-in of a
new government, typically after winning a confidence vote in the parliament. The
government negotiation phase might be complex and long. For instance, the past
ten years have seen an increase in the duration of government negotiations, defined
as the number of days between the election date and the date the government
is sworn in. This has happened not only in countries famous for long periods
of cabinet negotiations, such as Belgium, but also, e.g., in Germany, UK, and
Sweden, see Fig. 1.2. The research question considered in paper D of part II of
this thesis work is whether it is possible to use models for collective decision-making
to explain this behavior. The idea is to describe the government formation process
as a collective decision-making system on a signed graph having the parliamentary
members as agents and their alliances/rivalries as edges. The resulting graphs are
not structurally balanced, and the hypothesis is that their frustration correlates
with the duration of the government negotiation phase.
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1.1 Contributions

The contributions of this thesis work are within the area of complex (in general,
signed) networks and nonlinear dynamics over networks, with applications to col-
lective decision-making processes over social networks.

Starting from a problem of consensus proposed in Paper A, Papers B and C
formulate a collective decision-making problem over cooperative and antagonistic
networks, respectively, as a bifurcation problem, where the crossing of a pitchfork
bifurcation corresponds to the achievement of a common decision. The results of
Paper C admit a natural interpretation in the context of social networks, and in
Paper D a concrete example of political decision-making is proposed. In paper E,
departing from the study of nonlinear dynamics over networks, the focus is only
on signed graphs and in particular on the structure of the signed Laplacian matrix
and its pseudoinverse.

More specifically, the main contributions of this thesis work are:

e Formulation of a nonlinear interconnected cooperative model for “interval con-
sensus”, where nonlinearities are introduced to allow the agents to impose con-
straints on the achievable consensus value. If the intersection of the constraints
is nonempty, convergence to interval consensus is proven. (Paper A)

o Analysis of a nonlinear interconnected cooperative model for collective decision-
making with saturating and sigmoidal nonlinearities, and scalar bifurcation
parameter. Necessary and sufficient conditions for existence and stability of
equilibria are proposed, and an exact upper bound for the norm of equilibria is
derived. (Paper B)

o FExtension of the nonlinear model of Paper B to antagonistic networks. Analysis

of the qualitative behavior of the system, both in continuous- and discrete-time.
(Paper C)

o Interpretation of the results of Paper C in terms of frustration of the signed
network representing the community: the bifurcation value at which the first
bifurcation is crossed is shown to depend on the frustration, and an upper
bound for the 1-norm of the equilibria depending on the frustration is derived.
(Paper C)

e Introduction of a concrete example of the theoretical work of paper C. The
process of government formation in parliamentary democracies is explained as a
collective decision-making process over signed “parliamentary” networks, where
the crossing of a bifurcation corresponds to success/failure of a confidence vote.
Through the collection and analysis of data of legislative elections in the last 40
years for 29 European countries, the frustration of the parliamentary networks
is shown to be a good proxy for the complexity of the government negotiation
process. (Paper D)

e Study of the properties of “repelling” signed Laplacian matrices and their pseu-
doinverses. The set of repelling signed Laplacian matrices which are eventually
exponentially positive is shown to be closed under pseudoinversion and stability.
(Paper E)
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1.2 Thesis outline

The thesis is divided into two parts, with background material in the first part,
and edited versions of published papers in the second part.

1.2.1 Part I: Background

The first part introduces theoretical background for the publications in part II.
The preliminary material includes concepts and notions from matrix and graph
theory, and nonlinear systems.

1.2.2 Part Il: Publications

The second part of this thesis contains edited versions of the five papers listed
below.

Paper A: Interval Consensus for Multiagent Networks

Paper A is an edited version of

A. Fontan, G. Shi, X. Hu, and C. Altafini, “Interval Consensus for Multiagent
Networks,” IEEE Transactions on Automatic Control, vol. 65, no. 5, pp.
1855-1869, may 2020.

Summary The constrained consensus problem considered in paper A, denoted
interval consensus, is characterized by the fact that each agent can impose a lower
and upper bound on the achievable consensus value. Such constraints can be en-
coded in the consensus dynamics by saturating the values that an agent transmits
to its neighboring nodes. We show in the paper that when the intersection of the
intervals imposed by the agents is nonempty, the resulting constrained consensus
problem must converge to a common value inside that intersection. In our algo-
rithm, convergence happens in a fully distributed manner, and without need of
sharing any information on the individual constraining intervals. When the inter-
section of the intervals is an empty set, the intrinsic nonlinearity of the network
dynamics raises new challenges in understanding the node state evolution. Using
Brouwer fixed-point theorem we prove that in that case there exists at least one
equilibrium, and in fact the possible equilibria are locally stable if the constraints
are satisfied or dissatisfied at the same time among all nodes. For graphs with
sufficient sparsity it is further proven that there is a unique equilibrium that is
globally attractive if the constraint intervals are pairwise disjoint.

Contribution and background The author of this thesis contributed with imple-
mentations, analysis and reviewing the manuscript.
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Paper B: Multiequilibria Analysis for a Class of Collective Decision-Making
Networked Systems

Paper B is an edited version of

A. Fontan and C. Altafini, “Multiequilibria Analysis for a Class of Collec-
tive Decision-Making Networked Systems,” IEEE Transactions on Control
of Network Systems, vol. 5, no. 4, pp. 1931-1940, dec 2018.

Summary The models of collective decision-making considered in paper B are
nonlinear interconnected cooperative systems with saturating interactions. These
systems encode the possible outcomes of a decision process into different steady
states of the dynamics. In particular, they are characterized by two main attractors
in the positive and negative orthant, representing two choices of agreement among
the agents, associated to the Perron-Frobenius eigenvector of the system. In this
paper we give conditions for the appearance of other equilibria of mixed sign.
The conditions are inspired by Perron-Frobenius theory and are related to the
algebraic connectivity of the network. We also show how all these equilibria must
be contained in a solid disk of radius given by the norm of the equilibrium point
which is located in the positive orthant.

Contribution and background The author of this thesis contributed with the
majority of the work including theoretical derivations, implementations, numerical
calculations and the written manuscript.

Paper C: The role of frustration in collective decision-making dynamical
processes on multiagent signed networks

Paper C is an edited version of

A. Fontan and C. Altafini, “The role of frustration in collective decision-
making dynamical processes on multiagent signed networks,” arXiv:2105.11396,
pp. 1-18, may 2021.

Summary In paper C we consider a collective decision-making process in a net-
work of agents described by a nonlinear interconnected dynamical model with
sigmoidal nonlinearities and signed interaction graph. The decisions are encoded
in the equilibria of the system. The aim is to investigate this multiagent system
when the signed graph representing the community is not structurally balanced
and in particular as we vary its frustration, i.e., its distance to structural balance.
The model exhibits bifurcations, and a “social effort” parameter, added to the
model to represent the strength of the interactions between the agents, plays the
role of bifurcation parameter in our analysis. We show that, as the social effort
increases, the decision-making dynamics exhibits a pitchfork bifurcation behavior
where, from a deadlock situation of “no decision” (i.e., the origin is the only glob-
ally stable equilibrium point), two possible (alternative) decision states for the
community are achieved (corresponding to two nonzero locally stable equilibria).
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The value of social effort for which the bifurcation is crossed (and a decision is
reached) increases with the frustration of the signed network.

Contribution and background The author of this thesis contributed with the
majority of the work including theoretical derivations, implementations, numerical
calculations and the written manuscript.

Paper D: A signed network perspective on the government formation process
in parliamentary democracies

Paper D is an edited version of

A. Fontan and C. Altafini, “A signed network perspective on the government
formation process in parliamentary democracies,” Scientific Reports, vol. 11,
no. 5134, dec 2021.

Summary In parliamentary democracies, government negotiations talks follow-
ing a general election can sometimes be a long and laborious process. In order
to explain this phenomenon, in this paper we use structural balance theory to
represent a multiparty parliament as a signed network, with edge signs represent-
ing alliances and rivalries among parties. We show that the notion of frustration,
which quantifies the amount of “disorder” encoded in the signed graph, correlates
very well with the duration of the government negotiation talks. For the 29 Euro-
pean countries considered in this study, the average correlation between frustration
and government negotiation talks ranges between 0.42 to 0.69, depending on what
information is included in the edges of the signed network. Dynamical models
of collective decision-making over signed networks with varying frustration are
proposed to explain this correlation.

Contribution and background The author of this thesis contributed with the
majority of the work including theoretical derivations, implementations, numerical
calculations and the written manuscript.

Paper E: On the properties of Laplacian pseudoinverses
Paper E is an edited version of

A. Fontan and C. Altafini, “On the properties of Laplacian pseudoinverses,”
in 60th IEEE Conference on Decision and Control. Austin, TX, USA: IEEE,
2021.

Summary The pseudoinverse of a graph Laplacian is used in many applications
and fields, such as for instance in the computation of the effective resistance in elec-
trical networks, in the calculation of the hitting/commuting times for a Markov
chain and in continuous-time distributed averaging problems. In this paper we
show that the Laplacian pseudoinverse is in general not a Laplacian matrix but
rather a signed Laplacian with the property of being an eventually exponentially
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positive matrix, i.e., of obeying a strong Perron-Frobenius property. We show
further that the set of signed Laplacians with this structure (i.e., eventual expo-
nential positivity) is closed with respect to matrix pseudoinversion. This is true
even for signed digraphs, and provided that we restrict to Laplacians that are
weight balanced also stability is guaranteed.

Contribution and background The author of this thesis contributed with the
majority of the work including theoretical derivations, implementations, numerical
calculations and the written manuscript.

Publications

Works published by the author of this thesis are listed below in chronological
order!. Publications indicated by a « are included in the thesis.

A. Fontan, G. Shi, X. Hu, and C. Altafini, “Interval consensus: a novel class
of constrained consensus problems for multiagent networks,” in 56th IEEE
Conference on Decision and Control. Melbourne, Australia: IEEE, dec 2017,
pp- 4155-4160.

A. Fontan and C. Altafini, “Investigating mixed-sign equilibria for nonlinear
collective decision-making systems,” in 56th IEEE Conference on Decision
and Control. Melbourne, Australia: IEEE, dec 2017, pp. 781-786.

*A. Fontan and C. Altafini, “Multiequilibria Analysis for a Class of Collec-
tive Decision-Making Networked Systems,” IEEE Transactions on Control
of Network Systems, vol. 5, no. 4, pp. 1931-1940, dec 2018.

A. Fontan and C. Altafini, “Modeling wireless power transfer in a network of
smart devices: A compartmental system approach,” in 2018 17th European
Control Conference (ECC). Limassol, Cyprus: European Control Associa-
tion (EUCA), 2018, pp. 1468-1473.

A. Fontan and C. Altafini, “Achieving a decision in antagonistic multi agent
networks: frustration determines commitment strength,” in 57th IEEE Con-
ference on Decision and Control. Miami Beach, FL, USA: IEEE, dec 2018,
pp. 109-114.

*A. Fontan, G. Shi, X. Hu, and C. Altafini, “Interval Consensus for Multi-
agent Networks,” IEEE Transactions on Automatic Control, vol. 65, no. 5,
pp. 1855-1869, may 2020.

*A. Fontan and C. Altafini, “A signed network perspective on the government
formation process in parliamentary democracies,” Scientific Reports, vol. 11,
no. 5134, dec 2021.

1Extended abstracts are not included in the list.
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*A. Fontan and C. Altafini, “The role of frustration in collective decision-
making dynamical processes on multiagent signed networks,” arXiv:2105.11396,
pp. 1-18, may 2021.

*A. Fontan and C. Altafini, “On the properties of Laplacian pseudoinverses,”
in 60th IEEE Conference on Decision and Control. Austin, TX, USA: IEEE,
2021.



Concepts from Matrix Theory and
Perron-Frobenius Theory

The aim of this chapter is to introduce notation and preliminary material from
matrix theory, and it is mostly based on [34]. The second part of this chapter is ded-
icated to Perron-Frobenius theory. This topic is relevant for this thesis work due
to its applications in dynamical systems (e.g., the study of cooperative/monotone
systems) and graph theory (e.g., the study of the properties of Laplacian matrices).

2.1 Elements of matrix theory

This section presents a collection of definitions and results from matrix theory,
with particular focus on the characterization of eigenvalues!.

Let N, R, C indicate the set of natural, real, and complex numbers, respectively.
The spectrum of a matrix A € R™*™ is denoted A(A) = {A1(A),..., A\ (A)}, where
Ai(A),i=1,...,n, are the eigenvalues of A. The eigenvalues are in general assumed
to be arranged in the following (nondecreasing) order: Re[A1(A)] < Re[A2(A4)] <
.-+ <Re[Ap(A)], where Re[-] denotes the real part (similarly, Im[-] is used to denote
the imaginary part). The spectral radius of A is p(A) = max{|A|: A € A(4)}, and
its spectral abscissa is p(A) = max{Re[A]: A € A(A)}.

The kernel (or, null space) of A is ker(A) = {z € R": Az = 0}, and its range
(or, column space) is range(A) = {y € R" : y = Az}. The rank of A is rank(A) =
rank(A”) = n — dim(ker(A)), and the corank of A is corank(A) = dim(ker(A)).

Characterization of symmetric and symmetrizable matrices A matrix A €
R™ ™ is called symmetric if A= AT, and it is called (diagonally, omitted here-
after) symmetrizable if DA is symmetric for some diagonal matrix D with positive

1Basically, the aim is to answer the questions: “if a matrix satisfies a certain property, what
conclusions can be drawn on its eigenvalues?”, or, similarly: “if two matrices satisfy a certain
relationship, what conclusions can be drawn on their eigenvalues?”

13
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diagonal entries. Symmetric or symmetrizable matrices have real eigenvalues (see
[35, 36] for a more detailed characterization of symmetrizable matrices).

Characterization of similar and congruent matrices Given two matrices A, B €
R™*" B is similar to A (denoted A ~ B) if there exists a nonsingular matrix
S € R™ ™ such that B = S™1AS, while it is congruent to A if there exists a
nonsingular matrix S € R™*" such that B = SAST. Similar matrices have the
same eigenvalues. Congruent matrices that are also symmetric have the same
inertia, i.e., the same number (counting multiplicity) of positive, negative and zero
eigenvalues, also known as Sylvester’s law of inertia [34, Thm 4.5.8]. Moreover, a
bound between the eigenvalues of congruent (and symmetric) matrices is provided
by the Ostrowski’s Theorem.

Theorem 2.1 (Ostrowski, 4.5.9 in [34]). Let A,S € R"*™ with A symmetric
and S nonsingular. Let the eigenvalues of A, SAST and SST be arranged in

nondecreasing order. For each k=1,...,n, there exists a positive real number 6},
such that A\1(SST) < 0p < A (SST) and A\, (SAST) = O\ (A).

Characterization of diagonally dominant matrices A matrix A = [a;;] € R™*"
is called diagonally dominant (by rows, omitted hereafter) if

n
\aii|22|aij—|, izl,...,n, (21)
j=1

diagonally equipotent (nomenclature from [37]) if (2.1) holds with equality for all
i, weakly diagonally dominant if (2.1) holds and at least one (but not all) of the
inequalities is strict, and strictly diagonally dominant if (2.1) holds with strict
inequality for all 7. A matrix A € R™"*" is called irreducible if there does not exist
a permutation matrix P s.t. PT AP is block triangular.

Strictly diagonally dominant matrices are nonsingular, and, if all their diagonal
elements are strictly positive, then their eigenvalues have positive real part, see [34,
Thm 6.1.10 (Levy-Desplanques)]. The same characterization holds for matrices
that are irreducibly diagonally dominant, i.e., matrices that are irreducible and
weakly diagonally dominant, see [34, Corollary 6.2.27 (Taussky)]).

Diagonally equipotent matrices that are irreducible and have nonnegative di-
agonal elements, have eigenvalues with nonnegative real part, and their corank is
at most 1 [37, Proposition 1].

The Gersgorin’s Theorem is an useful tool to prove (or give the intuition be-
hind) the aforementioned results.

Theorem 2.2 (Gersgorin, 6.1.1 in [34]). Let A = [a;j] € R"*". The eigenval-
ues of A are in the union of the n Gersgorin’s disks, defined as

{)\EC:|>\—GZ‘Z‘|§Z|CLM|}, i1=1,...,n. (2.2)

j=1
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2.2 Perron-Frobenius Theory

In 1907 Perron showed that the class of positive matrices (i.e., matrices whose ele-
ments are strictly positive) is characterized by an important property, namely, that
the spectral radius of a positive matrix is an eigenvalue and that the correspond-
ing (left and right) eigenvectors are strictly positive. Later, thanks to Frobenius,
this result was extended to the class of irreducible and nonnegative matrices (i.e.,
matrices with nonnegative elements), and recently to the class of eventually posi-
tive matrices (i.e., matrices which become and stay positive after a certain power).
These findings, as well as related results, are reported in this section.

Characterization of positive and nonnegative matrices A matrix A = [a;5] €
R™ ™ is positive (denoted A > 0) if a;; > 0 for all i,j =1,...,n, and is nonnegative
(denoted A >0) if a;; > 0 for all 4,5 =1,...,n. Similarly, a vector z € R™ is positive
(denoted x > 0) if x; >0 for all i = 1,...,n, and is nonnegative (denoted x > 0) if
zi>0foralli=1,...,n

A useful property is that the largest and smallest row sum of a nonnegative
matrix provide an upper and lower bound, respectively, for its spectral radius.

Lemma 2.1 (Thm 8.1.22 in [34]). Let A € R"*" be nonnegative. Then

0< m,lnyn{zam}<,0 ) < m,ax,n{za”}

Perron-Frobenius theory can be used to understand: (i) when the spectral
radius is strictly positive, and (ii) when it is an eigenvalue.

The following theorem, called Perron’s Theorem, characterizes the spectral
properties of positive matrices.

Theorem 2.3 (Perron, 8.2.8 in [34]). Let A € R™"™ be positive. Then

(i) p(A) > 0 is an algebraically simple eigenvalue of A;

(ii) there is a unique real vector x € R™ such that Ax = p(A)x, and x > 0;

(iii) there is a unique real vector & € R™ such that ¢T A = p(A)¢T, and € > 0;

(iv) p(A) > || for all A € A(A);

(v) limy—y o0 (p(A) T A)* = x€T.

In general, these properties do not hold for the class of nonnegative matrices.

In this case, however, it is known that the properties (i)+(iii) of Theorem 2.3
admit the following generalization: the spectral radius is always a nonnegative
eigenvalue, and its corresponding (left and right) eigenvectors are nonnegative,
see [34, Thm 8.3.1]. The Perron-Frobenius Theorem shows that this result can

be further extended, and in particular that matrices that are nonnegative and
irreducible satisfy the first three properties of Theorem 2.3.

Theorem 2.4 (Perron-Frobenius, 8.4.4 in [34]). Let A € R™"™ (n >2) be
nonnegative and irreducible. Then

(i) p(A) > 0 is an algebraically simple eigenvalue of A;
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(ii) there is a unique real vector x € R™ such that Ax = p(A)x, and x > 0;
(iii) there is a unique real vector & € R™ such that ¢ A = p(A)¢T, and € > 0.

Remark 2.1. When A is a positive, or a nonnegative and irreducible, matrix (as in
Theorems 2.3 or 2.4, respectively), its eigenvalue p(A) is called the Perron eigenvalue,
and the corresponding left and right eigenvectors x > 0 and £ > 0 are called the Perron
eigenvectors.

Characterization of matrices that possess the strong Perron-Frobenius property
An important difference between positive and nonnegative and irreducible matrices,
is that for the latter the Perron eigenvalue may not be the unique eigenvalue with
largest modulus.

If a nonnegative matrix A is irreducible and p(A4) > A(A) for all A(A) € A(A),
then it is called primitive. The class of nonnegative and primitive matrices is par-
ticularly relevant due to their asymptotic properties: indeed, if A > 0 is primitive,
then limy_, oo (p(A) " LA)F = x€T, where x,& are the right and left Perron eigenvec-
tors, respectively. Essentially, Perron’s Theorem can be generalized to the class of
nonnegative and primitive matrices.

Recently (see [38]), it has been shown that Perron’s Theorem generalizes also
to the class of eventually positive matrices, which are matrices that may have
negative or zero elements, but become and stay positive after a certain power. To
adequately state this result (see Theorem 2.5), the following two definitions are

needed. A matrix A € R™" is called eventually positive (denoted A ; 0) if there
exists an integer kg € N4 such that Ak >0 for all k > kg. A matrix A possesses
the strong Perron-Frobenius property (denoted A € PF) if its spectral radius is a
simple positive eigenvalue and no other eigenvalue has the same modulus, and the
corresponding right eigenvector is positive.

Theorem 2.5 (2.2 in [38]). Let A € R™ ™. Then the following statements are
equivalent:

(i) A€ PF and AT € PF;
(i) A 0;
(iii) AT > 0.

— v
Remark 2.2. Observe that if A >0 or, if A > 0 and primitive, then A > 0.

Characterization of Metzler matrices and M-matrices Finally, this section con-
cludes by introducing Metzler matrices and M-matrices, for which interesting prop-
erties can be derived using Perron-Frobenius theory. These notions will turn useful
in the next chapters: for instance, Chapter 3 will show that Metzler matrices have
a close relationship with cooperative systems, while the properties of M-matrices
will be used in Chapter 4 to examine the structure of Laplacian matrices.

A matrix A € R " is called a Metzler matrix if it can be written as A = B—sl,
where B > 0 and s € R, i.e., it if all its off-diagonal elements are nonnegative. The
following lemma follows from the Perron-Frobenius Theorem.



2.2 Perron-Frobenius Theory 17

Lemma 2.2. Let A= B—sI € R"*" be an irreducible Metzler matrix, i.e., B> 0
is irreducible and s € R. Then
(i) p(A) is a simple eigenvalue of A, and p(A) = p(B) — s;
(ii) there is a unique real vector x > 0 such that Ax = p(A)x;
(iii) there is a unique real vector £ > 0 such that ¢TA = ¢T p(A)
A matrix A is called an M-matriz if it can be written as A = sI — B, where

B >0 and s > p(B). Perron-Frobenius theory has important consequences for the
spectrum of M-matrices, as the following lemma shows.

Lemma 2.3. Let A= sl — B € R" "™ be an irreducible M-matrix, i.e, B > 0 is
irreducible and s > p(B). Then

o A1 (A) is real and simple, and M\ (A) =s—p(B) > 0;

o there is a unique real vector x > 0 such that Ax = A\1(A)x;

o there is a unique real vector £ > 0 such that ¢T' A= \(A)¢T.

Therefore, a matrix A is an M-matrix if and only if —A is Metzler and all its
eigenvalues have nonnegative real part. If s = p(B) then A is called a singular
M-matrix. The properties of M-matrices have been extensively studied, see e.g.

[39]. A noteworthy property is that the inverse of a (nonsingular) M-matrix is
nonnegative.






Nonlinear systems

This chapter provides background theory on nonlinear systems and on some of the
tools (e.g., monotonicity, bifurcation theory) on which the analysis presented in
part II relies on.

Differently from linear systems, new phenomena arise when nonlinear dynam-
ics is involved, such as e.g., multiple isolated equilibrium points, bifurcations, and
limit cycles, see [40]. Investigating the behavior of a nonlinear system means to
study these phenomena, in terms of existence and stability properties. An impor-
tant class of nonlinear systems, whose asymptotic behavior has been extensively
studied in the literature (see for instance [41-43]), is that of monotone systems, i.e.,
systems which generate an order preserving flow. The first section of this chapter
gives a brief overview of nonlinear systems and their analysis, and introduces the
class of monotone systems.

The second section of this chapter instead focuses on bifurcation theory, which
studies how the qualitative behavior of a system changes under (small) variations
of its parameters.

3.1 Preliminary definitions

Consider a nonlinear autonomous system

#(t) = f(x(t), =(0) = wo, (3.1)

where f:U — R™ is a Lipschitz continuous function on an open convex subset
U CR™, that is, IK > 0 such that || f(z) — f(y)|| < K|jz —y|| for all z,y € U. Let
©(t,zo) be the solution x(¢) of (3.1) that satisfies (0) = xo; observe that existence
and uniqueness of a solution of (3.1) are guaranteed by the Lipschitz condition
imposed on f [40, Thm 3.2].

19
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A point z* is an equilibrium point of (3.1) if f(z*) =0. A nontrivial solution
x(t) of (3.1) is periodic of period T if there exists a T' > 0 such that x(¢t+T) = x(t)
for all t > 0. A periodic orbit is the image of a periodic solution in the phase
portrait. An isolated periodic orbit is called limit cycle.

Stability of an equilibrium point is characterized in Definition 3.1, and indicates
whether solutions starting close to an equilibrium point will remain close to it
(stable eq. point), converge to it (asymptotically stable eq. point), or get further
away from it (unstable eq. point), as t — oo, see [40, Chapter 4]'.

Definition 3.1. An equilibrium point z* of (3.1) is:

o stable if, for each € > 0, there is a ¢ > 0 such that ||z(0) — 2*|| < § implies
that [|z(t) —z*| < e for all ¢ > 0;

o asymptotically stable if it is stable and § can be chosen such that ||z(0)—z*|| <
0 implies that limy_,o0 (t) = z*;

e unstable if it is not stable.

P

Without loss of generality, hereafter it will be assumed that the system (3.1)
has an equilibrium point in the origin (x* =0 € i), and all the definitions will be
stated accordingly.

Lyapunov’s theory provides sufficient conditions to determine the stability prop-
erties of an equilibrium point. The well-known Lyapunov’s stability theorem states
that if there exists a continuously differentiable Lyapunov function, i.e., a function
that is positive definite in the domain and whose derivative along the trajectories of
the system is negative semidefinite, then the equilibrium point is stable. Moreover,
if the derivative is negative definite, then the equilibrium point is asymptotically
stable.

Theorem 3.1 (4.1 in [40]). Let the origin be an equilibrium point for (3.1).
Let V :U — Ry be a continuously differentiable function such that

o V(0)=0 and V(x) >0 for all x €U\ {0};
o V(z) <0 forall z €U.

Then the origin is stable. Moreover, if V() < 0 for all z € U\ {0} then the origin
is asymptotically stable.

In addition to a sufficient condition for asymptotic stability of the origin as an
equilibrium point for (3.1), Lyapunov’s theory can provide also an estimate (which
is often, however, conservative) for its region of attraction (or, basin of attraction),
defined as the set of points zg such that limi oo @(t,20) = 0. Intuitively, the
region of attraction indicates “how big” § in Definition 3.1 can be for the origin
to remain an attractive equilibrium point. In the particular case where the region
of attraction is the whole R", the origin is called globally asymptotically stable

1Similarly, a limit cycle is stable (resp., unstable) if all the trajectories starting arbitrarily
close to it will tend toward to (resp., away from) it as ¢ — oo [40, Chapter 8]. This section covers
key results on stability of equilibrium points only. Stability of periodic orbits is not discussed,
but an example of stable limit cycle will be shown in Section 3.2.
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(GAS). A sufficient condition for the origin to be GAS is given by the Barbashin-
Krasovskii theorem (see Theorem 3.2), namely, there exists a Lyapunov function
which is radially unbounded.

Theorem 3.2 (4.2 in [40]). Let the origin be an equilibrium point for (3.1).
Let V : R™ — R be a continuously differentiable function such that

e V(0)=0 and V(z) >0 for all x #0;
o lim)y 5400 V(%) = +00, ie., V is radially unbounded;
e V(z) <0 for all 2 #0.

Then the origin is globally asymptotically stable.

An important extension of these results is given by LaSalle’s Invariant Set
theory; a typical application is to establish the asymptotical stability of an equilib-
rium point when Lyapunov’s theory fails (for instance, when asymptotic stability
is expected but the derivative of the candidate Lyapunov function is only negative
semidefinite). LaSalle’s theory is built on the concept of invariant sets for the dy-
namical system. A set M is called (positively, omitted hereafter) invariant w.r.t.
(3.1) if every trajectory starting in M remains in M for all time, i.e., 2(0) € M
implies x(t) € M for all t > 0.

Theorem 3.3 (LaSalle, 4.4 in [40]). Let Q C U be a compact set, which is
positively invariant w.r.t. (3.1). Let V :U — R be a continuously differentiable
function such that

e V(z)<O0 forallze€Q;
« Z={zeQ:V(z)=0}.

Then ¢(t,xq) converges to M for all xg € Q, where M is the largest invariant set
in Z.

A consequence of LaSalle’s invariance principle is that the origin is an asymp-
totically stable equilibrium point of (3.1) if there exists a Lyapunov function V,
and no solution (except for the trivial solution) can stay identically in the set
Z={xcQ:V(zx)=0} [40, Corollary 4.1].

Remark 3.1. In Theorems 3.1, 3.2 and 3.3, the hypothesis that the Lyapunov function
V' is continuously differentiable is not essential. However, if this assumption is removed,
the derivative needs to be substituted by the upper Dini derivative of V' in the theorems.
The following material on the upper Dini derivative is from [44]. The upper Dini
derivative of a continuous function r : (a,b) — R, with a,b € R, at t € (a,b) is defined as

r(t) = limsup w

s—0t S

dat

If r is Lipschitz on some neighborhood of ¢ then the derivative is finite. Key result is
that r is decreasing on (a,b) if and only if d™r(t) <0 for all ¢ € (a,b).

Now, let V : U/ — R be a continuous and locally Lipschitz function, and z(t) be a
solution of (3.1). The upper Dini derivative of V(z(t)) is defined accordingly to (3.1),

dtV(z(t)) = limsup,_,o+ w The upper Dini derivative of V' along the
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vector field f of (3.1), denoted dTV or dj{V7 is given by

IV (2) = limsup L& 8/@) = V(@)

s—0t+ s

and it holds that d¥V (z)|p—p+ = dTV (2(t))]j=¢+ with z(t*) =z*. If dTV(z) <0 on U,
then V is decreasing along the solutions of (3.1).

The theorems discussed so far are main results of the Lyapunov’s direct method,
which focuses on finding a Lyapunov function V. The next theorem, denoted
Lyapunov’s indirect method, offers an alternative way to determine the stability of
an equilibrium point, by means of linearization.

Theorem 3.4 (4.7 in [40]). Let the origin be an equilibrium point for (3.1),
and assume that f is continuously differentiable in U. Let fy(x) = %(x) indicate

the Jacobian of (3.1) evaluated at x. Then the origin is: ’
 asymptotically stable if f;(0) is Hurwitz, i.e., Re[\] < 0 for all A € A(f;(0));

o unstable if there exists at least one eigenvalue of f,(0) with positive real
part.

This method fails when f;(0) has eigenvalues with nonpositive real part and
at least one eigenvalue with zero real part. In this case, more advanced tools
from center manifold theory can be used to study the stability properties of the
origin [40, Chapter 8]. It is out of the scope of this thesis work to detail center
manifold theory, however a brief overview is given in what follows, which will
be useful in Section 3.2. Assume that the origin is an equilibrium point of the
system (3.1). The generalized eigenspaces of f(0) relative to eigenvalues with
strictly negative, zero, and strictly positive real part are denoted stable, center,
and unstable generalized eigenspaces, respectively. Center manifold theory states
that it is possible to define three manifolds W;, i = s, ¢, u, denoted the stable, center
and unstable manifolds, respectively, which are invariant w.r.t. (3.1) and tangent
to the generalized stable, center and unstable eigenspaces eigenspaces of f;(0) at
0, respectively. When there is no unstable manifold, the stability properties of
the origin as an equilibrium point of (3.1) can be investigated by studying the
dynamics of (3.1) restricted to the center manifold W,, referred to as the reduced
system. If the origin is an asymptotically stable (resp., unstable) equilibrium point
of the reduced dynamics then it is also an asymptotically stable (resp., unstable)
equilibrium point of the original (higher-order) system [40, 45].

Discrete-time systems The notions and results introduced in Section 3.1 for
continuous-time systems admit a natural extension and can be restated for discrete-
time nonlinear systems, represented as

z(k+1)= f(z(k)), =(0)=wo. (3.2)

For instance, a point 2* is an equilibrium point of (3.2) if f(z*) = a*. Provided that
the derivative of V' is substituted with the increment of V' along the trajectories,
Va(z) :=V(f(z)) — V(z), Theorems 3.1 and 3.2 can be used to provide sufficient
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conditions for stability and asymptotical stability, and global asymptotic stability,
respectively, of an equilibrium point. The discrete-time version of Lyapunov’s
indirect method can be stated as follows.

Theorem 3.5. Let the origin be an equilibrium point for (3.2), and assume that
f is continuously differentiable in U. Let fy(z) := %(x) indicate the Jacobian of

(3.2) evaluated at x. Then the origin is:

 asymptotically stable if all the eigenvalues of f,(0) are inside the unit circle,
ie., |Al <1 for all A € A(fz(0));

o unstable if there exists at least one eigenvalue of f,(0) outside the unit circle,
ie., IX € A(fz(0)) such that |A| > 1.

When f;(0) has eigenvalues inside the unit circle and at least one eigenvalue
on the unit circle, tools from center manifold theory (as in the continuous-time
case) can be used to study the stability properties of the origin as an equilibrium
point of the system (3.2), see for instance [46].

3.1.1 Cooperativity and Monotonicity

An interesting class of nonlinear systems is that of monotone systems, whose char-
acteristic asymptotic properties have motivated their comprehensive analysis in
the literature.

Consider a nonlinear system, described as (3.1). To introduce the concept of
monotonicity, the notions of orthant of R and of partial ordering generated by an
orthant are needed. Let S € R™*™ be a signature matrix, i.e., S = diag{s1,...,sn}
with s; = +1 for all : = 1,...,n, and let SR” indicate an orthant of R", SR" =
{x eR":s;2;>0,i=1,...,n}. Let <ggn indicate the partial ordering generated
by SR", i.e., x <grn y if and only if y —x € SR".

Definition 3.2. The partial ordering <ggn is preserved by the solution operator
©(t,-) and the system (3.1) is type SR™ monotone if whenever z,y € U and x <ggn
y then ¢(t,2) <grn @(t,y) for all ¢ > 0.

Lemma 3.1 (2.1 in [42]). If f € CY(U) where U is open and convex in R™ then
©(t,-) preserves the partial ordering <ggn for t > 0 if and only if S g—i(x)S has
nonnegative off-diagonal elements for every x € U.

As previously stated, the importance behind the analysis of monotone systems
lies in their asymptotic behavior. In particular, it is known that if all the tra-
jectories of a monotone system are bounded, then they generically converge to
an equilibrium point, and that there are no attracting periodic orbits other than
equilibria [43].

Cooperativity is a special case of monotonicity corresponding to SR™ = R",
where R’ is the nonnegative orthant. The partial ordering generated by R”} is
denoted <.

Definition 3.3. The partial ordering < is preserved by the solution operator
(t,-) and the system (3.1) is cooperative if whenever z,y € U and z < y then

o(t,z) < (t,y) for all £ > 0.
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The next theorem provides a necessary and sufficient condition for a vector
field f to determine a cooperative system.

Theorem 3.6 (12.11 in [47]). The system (3.1) is cooperative if and only if it
satisfies the Kamke-Muller condition:

<y = filz) < fily) Visuch thatz;=y;

If f € CY(U), a necessary and sufficient condition is that g—g(x) has nonnegative
off-diagonal elements for every x € U.

Remark 3.2. Observe that in Theorem 3.6, the necessary and sufficient condition for a
differentiable vector field f to determine a cooperative system is that % (z) is Metzler (in
the domain). This implies that, if the Jacobian of (3.1) is Metzler, then R'} is positively
invariant w.r.t. (3.1).

3.2 Bifurcation analysis

In this section a brief overview of bifurcation analysis for nonlinear autonomous
systems is presented, both in continuous-time and discrete-time. The main idea is
that when a nonlinear system is dependent on a parameter, its qualitative behavior
may change as the value of the parameter varies. A bifurcation is defined as a
change in the number of equilibrium points or periodic orbits, or in their stability
properties, as a parameter is varied. The parameter is called bifurcation parameter,
and the points at which changes occur are called bifurcation points. A visual
representation of a bifurcation is given by a bifurcation diagram [40].

A bifurcation can occur only when, for a certain value of the bifurcation pa-
rameter, the Jacobian of the system at an equilibrium point has (at least) one
eigenvalue on the imaginary axis (in continuous-time systems), or has (at least)
one eigenvalue of the unit circle (in discrete-time systems), see Fig. 3.1, which
implies that the equilibrium point has a center manifold?; for simplicity, this the-
sis work considers only the class of steady-state bifurcations for which the center
manifold has dimension one.

From center manifold theory, in order to investigate the qualitative behavior of
a nonlinear (in general, n-dimensional) system near a bifurcation point it is suffi-
cient to study the center manifold (scalar) dynamics. A key concept of bifurcation
theory is that each steady-state bifurcation can be represented by a canonical
scalar system, called normal form, and that every problem can be reduced to a
specific normal form exhibiting the same qualitative behavior under variation of a
parameter.

This chapter provides a brief introduction on the normal forms of (steady-state)
bifurcations that are of interest for this thesis work, and, later, on the procedure
to reduce general (higher-dimensional) problems to these canonical forms. It fo-
cuses specifically on systems that have an odd symmetry, denoted Zso-equivariant

2In this case, the equilibrium point is called nonhyperbolic [45, 46]. However, this notation is
not used in the papers of Part II.
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Im Im Im
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Figure 3.1: Necessary condition for occurrence of a bifurcation at an equilibrium
point. (a): The Jacobian at the equilibrium point has eigenvalues with zero real
part (continuous-time systems). (b): The Jacobian at the equilibrium point has
eigenvalues on the unit circle (discrete-time systems). Legend: crosses indicate
eigenvalues of the Jacobian at an equilibrium point.

systems [48, 49], which exhibit a specific type of steady-state bifurcation, denoted
pitchfork bifurcation.

Since the (stability) characterization of equilibrium points for continuous-time
and discrete-time systems is different, these cases will be treated separately. The
material presented in this chapter is inspired mostly by [45, 46, 48].

3.2.1 Continuous-time systems: pitchfork bifurcation

Consider the nonlinear system
jﬁzf(ﬂj‘,ﬂ'), x(o):l"m (33)

where x € R", m € R is a scalar parameter, and f:R"™ — R" is infinitely differen-
tiable everywhere. Let fy(z,7) := %(x,ﬂ) indicate the Jacobian of (3.3) evaluated
at (x,7). A point z* is an equilibrium point of (3.3) at m ==* if f(a*,7*)=0.
Definition 3.4. The parameter 7 is called bifurcation parameter, and the set of
(z,7) satisfying f(xz,7) = 0 bifurcation diagram. A point (z*,7*) is called bifur-
cation point if the number of solutions of f(z,7) = 0 changes as 7 varies in a
neighborhood of 7*.

Necessary conditions for a bifurcation to occur at a point (z*,7*) are that
fl@*,7*) =0, and f(z*,7") has an eigenvalue on the imaginary axis. Without
loss of generality, in what follows it is assumed that (z*,7*) = (0,0), and that the
zero eigenvalue of f,.(0,0) is real and simple3.

This section focuses on a specific type of (steady-state) bifurcation, called
pitchfork bifurcation, characterized by the fact that at the bifurcation point the
number of solutions of f(z,7) =0 jumps from one to three. This type of bifur-
cation is ubiquitous of systems that have odd symmetry, i.e., systems for which
f(z,m) =—=f(—z,m) for all z € R™.

3The case in which fz (0,0) has complex conjugate eigenvalues on the imaginary axis is not
considered.
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Normal form of a pitchfork bifurcation

The normal form of a pitchfork bifurcation is described by the scalar nonlinear
system
i=mz—13, zeR, meR. (3.4)

Let g(x,7) = —23 + 7z and g,(z,7) = =322 + . Observe that the system (3.4)
has odd symmetry since g is odd in x.

The origin is an equilibrium point of the system (3.4) for all values of 7 € R.
It is globally asymptotically stable when 7 < 0, and unstable when 7 > 0. When
7w > 0 the system admits two new equilibrium points in ++/7, which are locally
asymptotically stable since g,(£/m,m) < 0 for all # > 0. This means that the
system (3.4) undergoes a pitchfork bifurcation at = = 0, and the corresponding
bifurcation diagram is depicted in Figure 3.2

1

-0

equilibria

Figure 3.2: Bifurcation diagram of a pitchfork bifurcation, whose normal form is
shown in (3.4). Solid lines indicate stable equilibrium points, while a dashed line
unstable equilibrium points.

How to recognize a pitchfork bifurcation

In the previous section, the normal form of a pitchfork bifurcation has been intro-
duced. In general if a bifurcation problem, represented by a nonlinear system

t=g(x,m), zeR meR, (3.5)
at a point (z,7) = (0,0) satisfies the conditions
9=92 =022 =97 =0, Gzaz <0, Grz >0, (3.6)

then it is said to be equivalent to the normal form (3.4), and (3.6) is said to solve

the recognition problem for the pitchfork bifurcation®. Intuitively, this means

that there exists an adequate change of coordinates that transforms the problem

4Figure 3.2 shows a supercritical pitchfork bifurcation. A subcritical pitchfork bifurcation
instead is characterized by the number of equilibria jumping from 3 to 1, and is described by the
normal form g(z,7) =7z + x3 = 0. This thesis work focuses only on the supercritical pitchfork
bifurcation, therefore the term “supercritical” will be dropped from now on.

5The subscripts in (3.6) indicate partial derivatives.
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g(x,7) = 0 into the standard form of a pitchfork, —z3 + 72 = 0, see [48, §1] for
details. Therefore, the number of solutions of g(z,7) =0 jumps from one to three
as m crosses 0.

Similarly, every nonlinear model that exhibits a pitchfork bifurcation behavior
can be reduced to a scalar differential equation & = g(x,7) that satisfies (3.6). A
method to obtain such scalar equation from a general n-dimensional system is the
Lyapunov-Schmidt reduction, explained in [48, §3] and used in Papers B and C.

3.2.2 Discrete-time systems: pitchfork and period-doubling
bifurcations

Consider the nonlinear system
x(k+1) = f(x(k),n), x(0)=xo, (3.7)

where x € R™, m € R is a scalar parameter, and f:R"™ — R" is infinitely differen-
tiable everywhere. Let fy(z,7):= %(x,w) indicate the Jacobian of (3.7) evaluated
at (x,7). A point z* is an equilibrium point of (3.7) at m ==* if f(a*,7*) =z*.
Definition 3.5. The parameter 7 is called bifurcation parameter, and the set
of (z,m) satisfying f(x,7) = x bifurcation diagram. A point (z*,7*) is called
bifurcation point if the number of solutions of f(x,7) = x changes as 7 varies in a
neighborhood of 7*.

Necessary conditions for a bifurcation to occur at a point (x*,7*) are that
flz*,m*) =a*, and fp(a*,7*) has an eigenvalue on the unit circle. Again, without
loss of generality, in what follows it is assumed that (z*,7*) = (0,0), and that the
eigenvalue of f;(0,0) on the unit circle is real and simple, that is, I\ € A(f(0,0))
such that either A=+1 or A = —1.

The type of bifurcation the system (3.7) undergoes at (0,0) depends on the
sign of the eigenvalue A. The next paragraphs introduce the normal forms of a
pitchfork bifurcation (A = 1, assuming that the system has odd symmetry), and
of a period-doubling bifurcation (A = —1).

Normal form of a pitchfork bifurcation

The normal form of a pitchfork bifurcation is described by the scalar nonlinear

system
' z(k+1)=(1+m)z(k) —z(k)®, zeR, meR. (3.8)

Let g(x,7) = (1+m)z — 2> and g, (x,7) = (1+7) —32%. The system (3.8) has odd
symmetry since g is odd in .

The analysis is similar to the continuous-time case. The origin is an equilibrium
point of the system (3.4) for all values of 7 € R, and it is stable when 7 < 0 (and |7|
small), and unstable when 7 > 0. When 7 > 0 the system admits two new equilib-
rium points in ++/7, which are locally asymptotically stable since g, (++/7,7) <1
for all 7 >0 (and 7 small).

This means that the system (3.4) undergoes a pitchfork bifurcation at 7 =0,
and the corresponding bifurcation diagram is the same as Fig. 3.2.
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Normal form of a period-doubling bifurcation

The normal form of a period-doubling bifurcation is described by the scalar non-
linear system

z(k4+1)=—(1+mz(k)+z(k)® 2zeR, 7R (3.9)

Let g(z,7) = —(1 + )z + 23 and g.(2,7) = —(1 4+ ) + 322, The origin is an
equilibrium point of the system (3.9) for all values of 7 € R. It is asymptotically
stable when 7 < 0 (and || small), and unstable when 7 > 0.

For values of 7 near 0 the system (3.9) does not admit any other equilibrium
point. Instead, as the name suggests, the characteristic of a period-doubling bifur-
cation is that it produces an oscillation of period 2. To understand, one needs to
consider the second iterate of the system (3.9),

z(k+2) = ¢*(z(k),n) (3.10)
described by
@z, 7m) = glg(z,m),7m) = 1+7)2z — (14+7)(2+ 21+ 72z + O(z°),

and observe that a nontrivial equilibrium point of (3.10) corresponds to a periodic
oscillation of (3.9) of period 2.

The bifurcation analysis of the system (3.10), see Fig. 3.3, shows that (3.10)
undergoes a pitchfork bifurcation from the origin at 7 = 0, which implies that (3.9)
admits a stable limit cycle of period 2 when 7 crosses 0.

equilibria

-0.6

Figure 3.3: Analysis of the second iterate (3.10) near (0,0). (a): g2(z,7) near (0,0)
for different values of 7. (b): Bifurcation diagram of (3.10).

How to recognize a pitchfork or a period-doubling bifurcation

In the previous section, the normal forms of a pitchfork and a period-doubling
bifurcation have been introduced. In general if a bifurcation problem, represented
by a scalar nonlinear system

z(k+1)=g(x(k),n), zeR, m€R, (3.11)
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at a point (z,7) = (0,0) satisfies the conditions

g = 07 ng = ]‘7 gl‘l’ = 07 gﬂ' = 07 g:r:r;z: < 07 g7r:1: > 07 (312)

then it is equivalent to the normal form of a pitchfork bifurcation (3.8). If, instead,
it satisfies the conditions

9g=0, gz=-1, G2x=0, 9r=0, gzaz >0, gra <O, (3-13)

then it is equivalent to the normal form of a period-doubling bifurcation (3.9).

In n-dimensional systems (3.7), the bifurcation analysis reduces to that of the
dynamics along the center manifold of the equilibrium point. The details can be
found in [46, Chapter 5].






Theory of graphs and social networks

Graphs are the natural mathematical structure to model networks of interacting
agents. For instance, a social network can be modeled as a graph where the
nodes represent individuals, and the edges the social interactions between them
[10]. The general aim of this chapter is to introduce key notions and results from
graph theory, i.e., the study of networks structure, and the interpretation will be
given in terms of social networks. In particular, the second part of this chapter is
dedicated to the theory of signed graphs, which are used to model networks where
the interactions between the agents are not restricted to be friendly or cooperative,
but can be hostile or antagonistic.

The main references for the material of this chapter are [50-52] and [14, 16, 53,
54], for graph and signed graph theory, respectively. In the rest of this thesis work
the terms graphs and networks will be used interchangeably.

4.1 Graphs

A graph G is defined as a triple G = (V,£, A) where V = {1,...,n} is a finite set of
nodes, £ CV x V is a set of edges, and A = [a;;] € R is the adjacency matrix
of G, i.e., a;; > 0 if and only if (j,i) € £. A graph is unweighted if a;; € {0,1} for
all 4,5 € V, and it is weighted otherwise.

A self-loop is an edge from a node to itself.

A graph G is called undirected if £ is a set of unordered edges, i.e., if (i,5) € €
implies that (j,7) € £, and it is called directed (or, a digraph) if £ is a set of ordered
edges. In this case, (i,5) € £ denotes an edge from i to j.

A (directed) path in a graph is an ordered sequence of nodes such that any pair
of consecutive nodes in the sequence is a (directed) edge of the graph. It is simple
if all nodes in the (directed) path are distinct. A graph is (strongly) connected
if there is a (directed) path between any two distinct nodes. A cycle is a simple

31
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00100
20005
A=103000
06400
00010

Aln = diag{1,7,3,10,1}
A° = diag{2,9,5,1,5}

Ain — Aout — dlag{3, 47 57 4}
(b)

Figure 4.1: Examples of simple, weighted graphs. (a): Strongly connected digraph
with card(V) = 5 nodes and 7 directed edges, and corresponding adjacency, in-degree
and out-degree matrices. (b): Weight balanced graph with card(V) = 4 nodes and
10 directed edges, and corresponding adjacency, in-degree and out-degree matrices.

(directed) path that starts and ends at the same node.

A node j is a in-neighbor of i (or, j is adjacent to i) if (j,i) € £, and is a out-
neighbor of i if (i,7) € £, and the in-neighborhood j\/iin and out-neighborhood NPt
of a node ¢ indicate the set of all in- and out-neighbors of i, respectively. A node
is called isolated if its in-neighborhood and out-neighborhood are both empty sets.
A graph is complete if every pair of nodes is adjacent, i.e., /\/;-in = NPt =V {i}
forall € V.

The in-degree and out-degree of a node i € V are defined by 5%“ = Z?Zl a;j
and 69U = Z?:l aj;, respectively. A node is called isolated if its in-degree and
out-degree are both zero (i.e., (5%“ = 69U =0). A graph is called weight-balanced if
in-degree and out-degree coincide for each node. If a graph is undirected then it is
also weight-balanced and in this case the superscripts “in” and “out” are dropped
(5%“ = 69Ut =: §; for all 7). The in-degree matrix and out-degree matrix of a graph
are defined by A" = diag{si",..., 5"} and A% = diag{o94, ..., 698}, respectively.
This thesis work mostly deals with the notion of in-degrees and, when there is no
ambiguity, the notation §; and A is used to indicate the in-degree of a node i and
the in-degree matrix, respectively.

These concepts are illustrated in the examples of Figure 4.1.

Remark 4.1. The adjacency matrix of a graph G = (V, €, A) has the following properties:
e G is without self-loops if and only if A has zero diagonal elements;

e G has an isolated node ¢ if and only if the i-th row and i-th column of A are zero;
e G is undirected if and only if A = AT;
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e G is connected /strongly connected if and only if A is irreducible, i.e., if there does
not exist a permutation matrix P such that PT AP is block triangular;
e G is weight-balanced if and only if Al = AT]I, where 1 is the vector of all 1.

R

Remark 4.2. This thesis work considers graphs that are (strongly) connected and without

self-loops.

4.1.1 Laplacian of a graph and its properties

This section introduces the definition of Laplacian matrix of a graph. The defini-
tions and lemmas are stated for the general case of directed graphs; however, they
hold also for undirected graphs.
The Laplacian of a graph G = (V,&, A), with card(V) = n, is the matrix L €
R™*"™ defined by
n .
(L) = {Z’H“"“ . (4.)

—ajj, J#i.

In compact form, L = A" — A.

The following lemma is a collection of fundamental and well-known properties
of the Laplacian matrix, see for instance [51, 52, 55-57]. Intuitively, (i)=(vi)
follow directly from the definition of Laplacian, the Gersgorin’s Theorem, and the
Perron-Frobenius Theorem, and (vii) is shown in [57, Theorem 2].

Lemma 4.1. The Laplacian L of a digraph G = (V,€, A), with card(V) = n, has
the following properties:
(i) L1 =0, i.e, 0 is always an eigenvalue of L with right eigenvector 1;
(ii) all the eigenvalues of L have nonnegative real part, i.e., Re[A\(L)] > 0 for all
ML) € A(L);
(iii) L is a singular M-matrix.
Moreover, if the digraph G is strongly connected, then:
(iv) L is a singular and irreducible M-matrix;
(v) the zero eigenvalue of L is simple, rank(L) =n — 1 and ker(L) = span{1};
(vi) the left eigenvector of L associated with the zero eigenvalue is positive, i.e.,
€>0 with LT¢ =0 and ker(LT) = span{¢};
(vii) € > 0 is the unique vector (up to a scaling factor) such that EL + LTZ is
positive semidefinite, with 2 := diag{¢}, and rank(EL + LTE) =n —1.

Something more can be added when a digraph is not only strongly connected
but also weight-balanced, as shown for instance in the recent work [57].

Lemma 4.2. Let G = (V,£,A), with card(V) = n, be a strongly connected di-
graph with Laplacian L. The following statements are equivalent:

(i) G is weight-balanced;

(ii) LT1 =0 and, therefore, ker(L) = ker(L™) = span{1};
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(iii) the symmetric part of L, Ls := L+2LT , is positive semidefinite and rank(Lg) =

n—1.

When a digraph G is strongly connected then it does not have isolated nodes,
which means that the in-degree matrix A" is positive definite. Therefore, its
inverse (A")~! is well-defined and positive definite. The normalized Laplacian of
a strongly connected digraph G = (V,&, A) is the matrix £ € R™*" defined by

L, J=i
S VR (42)
k=1%tk

In compact form, £ =TI — (A")"1A. The normalized Laplacian L is a Laplacian
matrix, therefore it satisfies the same properties of L listed in Lemma 4.1. For
completeness, its key properties are summarized in the following lemma: in this
case, a bound for the eigenvalues of £ can be provided using the Gersgorin’s
Theorem.

Lemma 4.3. The normalized Laplacian L of a strongly connected digraph G =
(V,&,A), with card(V) = n, has the following properties:

(i) L1 =0, i.e., 0 is always an eigenvalue of L with right eigenvector 1;
(ii) the zero eigenvalue of L is simple, rank(L) =n — 1 and ker(L) = span{1};

(iii) every eigenvalue of L lies in the closed bounded disk of center 1 and radius
1 (ie,|A=1|<1forall e A(L));

(iv) L is a singular and irreducible M-matrix.

4.2 Signed graphs

A signed graph G = (V,€, A) is a graph where each edge in £ is associated with a
positive or negative sign. The corresponding adjacency matrix is a signed matrix,
i.e., sign (aij) = =41 for all (j,i) € &, see Fig. 4.2a. A signed graph is unweighted
if a;; € {—1,0,1} for all 4,5 € V, and it is weighted otherwise. In this setting the
graphs described in Section 4.1, i.e., graphs whose edges have all positive weights
or, equivalently, whose adjacency matrix is nonnegative, are also denoted unsigned
graphs.

Except for the notions of in-degrees and out-degrees, all the definitions intro-
duced in Section 4.1 hold also for graphs that are signed. The notions of signed
(in- and out-)degrees will be discussed in Remark 4.3 of Section 4.2.1.

4.2.1 Signed Laplacian matrices

In the literature of signed graphs different definitions of signed Laplacian are pro-
posed, see [16, 54]. Using the notation introduced in [54], the opposing signed
Laplacian L° is defined as

[Lo}ij _ {22—1 |a’ik|> Jj=i (43)

—ajj, J#i.
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while the repelling signed Laplacian L" is defined as

[LT]ij _ {22_1 Qik, J=1 (4.4)

—045, .] iia

When it is clear from context, the superscripts “o” and “r” will be dropped.}

Compared with the Laplacian of an unsigned graph introduced in Section 4.1.1,
here denoted unsigned Laplacian, the signed Laplacian matrices may or may not
satisfy the properties listed in Lemma 4.1, as summarized and illustrated in Ta-
ble 4.1. Counterexamples, see for instance Figure 4.2, can be found to show that
a certain property does not hold in the signed case.

It is possible to define a signed Laplacian matrix, i.e., a matrix that induces a
simple weighted signed digraph.
Definition 4.1. A matrix L € R™*" (n > 2) is a:

e opposing signed Laplacian matrix if

(i) L has nonnegative diagonal elements;
(ii) L is diagonally equipotent.

e repelling signed Laplacian matrix if
(i) L1=0.

A signed Laplacian matrix L (repelling or opposing) induces a simple weighted
signed digraph G = (V,€,A) with card(V) = n, where (i,j) € £ if and only if
[L];i #0, and [A];; = —[L];; if j #i or [A];; = 0 otherwise.

o
Remark 4.3. As for the notion of signed Laplacian, in this thesis work two alternative

definitions for the signed in-degrees and out-degrees of a signed graph G are proposed.
The in-degree and out-degree of a node ¢ € V are defined either by

n n
6" =D layls =3 lasil, (4.5)
Jj=1 Jj=1
or
) n n
(5%n = Zai]g 5§)Ut = Za]—,— (46)
J=1 J=1

in the context of the opposing or repelling signed Laplacian, respectively. Therefore, the
signed Laplacian of a graph, given by (4.3) or (4.4), can be written in compact form as
L =A™ — A, where A™ is the signed in-degree matrix with diagonal elements given by
(4.5) or (4.6), respectively.

ITo avoid confusion in the papers of part I, the following legend holds:

e Paper A and Paper B consider unsigned graphs, and use the notion of unsigned Laplacian
(4.1) and its normalization (4.2);

e Paper C and Paper D consider signed graphs, and use the notion of opposing signed
Laplacian (4.3) and its normalization (4.7), defined in Section 4.3.1;

o Paper E considers signed graphs, and uses the notion of repelling signed Laplacian (4.4).
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Notice that once a definition for the signed in-degrees and out-degrees is adopted, the
notion of weight balanced signed graph is equivalent to the one introduced in Section 4.1,
namely, if signed in-degree and out-degree coincide for each node.

0 0 =100
-2 0 =305
A=(0 =3 0 00
0 2 4 00
0 0 0 10
(a)
10 1 0 O -1 0 1 0 O
210 3 0 =5 2 0 3 0 -5
L°=10 3 3 0 O, L"=|0 3 -3 0 O
0-2-46 0 0 -2 -4 6 0
00 0 -1 1 0 0 0 -1 1
(b)
10 x A(L°) 101 x A(LT)
5 5
g 0 g X X 0 X XX %
10 10
5 0 5 10 15 20 10 -5 0 5 10 15
Re Re
(c)

Figure 4.2: Example of a weighted signed digraph. (a): Strongly connected digraph
with card()V) = 5 nodes and 8 directed edges, and associated adjacency matrix. A
red color is used to indicate edges with negative weights, and a blue color to indicate
edges with positive weights. (b): Repelling and opposing signed Laplacian. Observe
that only L° is diagonally dominant. (c): Ger$gorin’s disks and eigenvalues of L°
(left) and L" (right). Observe that 0 € A(L") but 0 ¢ A(L®), and that while all the
eigenvalues of L° have positive real part, L™ has two eigenvalues with negative real
part.

L° L" | Property

B | 0 is an eigenvalue
| all the eigenvalues have nonnegative real part
| it is diagonally dominant

EENE -

Table 4.1: Properties of the opposing and repelling signed Laplacian compared
with the unsigned Laplacian. Legend: B = the property is always satisfied, M = the
property may or may not be satisfied.
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4.3 Social networks as signed graphs

In the context of social networks, edges with positive weights represent friendship
or cooperation, while edges with negative weights represent hostility or competi-
tion. The notion of structurally balanced network, first introduced in the field
of social psychology by Heider [58] and then translated into the setting of signed
graph theory by Harary and Cartwright [15, 59], represents a situation where, even
if there are antagonistic interactions between the agents, at a network level there
is no social tension. There are only two ways a social network can be structurally
balanced: if, trivially, there is no antagonism between the individuals; or, if it is
possible to divide the group of agents into two groups of mutual friends linked
only by hostile interactions [10]. When a network is not structurally balanced,
measures are proposed to characterize its distance from a structurally balanced
state, see e.g., line index of balance introduced by Harary [17]. In this section
these concepts are formulated in terms of (undirected) signed graphs.

4.3.1 Structurally balanced graphs and frustration index

Let G = (V,&, A) be a signed, undirected, and simple graph.

Definition 4.2. A signed graph is structurally balanced if there exists a partition
of the node set V = V; U Vs, with V; NVa = (), such that every edge between V;
and Vs is negative, and every edge within V; or Vs is positive.

Figure 4.3a illustrates a structurally balanced signed graph. An unsigned graph
is a special case of structurally balanced graph, in which for instance V; =V and
Vo = (.

The opposing signed Laplacian (4.3)? has been used in the literature of signed
graphs to characterize the structural balance of a signed graph G. In compact
form, L = A— A, where A is the (signed) degree matrix (4.5), A := diag{d1,...,dn}
with §; = ?:1 |aij| > 0 for all . When the signed graph G is connected, then it
does not have isolated vertices, which means that the degree matrix A is positive
definite, and that its inverse A~! is well-defined and positive definite. As for
unsigned graphs, the normalized signed Laplacian can be defined as

) {1, j=1
(7 oy
D relaikl’ J=

which in compact form reads £ =A"1L =1 — A~'A. Equivalent conditions for G
to be structurally balanced can be formulated in terms of £, see for instance [16].

(4.7)

Theorem 4.1. Let G be a signed connected graph (card(V) = n) with normalized
signed Laplacian L. Then G is structurally balanced if and only if any of the
following conditions are satisfied:

(i) all the cycles in G are positive, i.e., they all have an even number of edges
with negative weights;

2Notice that in this section the superscript “o” will be dropped, and the opposing signed
Laplacian L° will be referred to just as signed Laplacian L.
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(ii) there exists a signature matrix S = diag{si,...,sp}, with s; = +1 for all 1,
such that SLS has all nonpositive off-diagonal entries;

(iii) the smallest eigenvalue of L is zero, i.e., \1(L£) = 0.

The first condition of Theorem 4.1 corresponds to the original definition of
structurally balanced network introduced by Harary and Cartwright [15].

The second condition, illustrated in Fig. 4.3b and Fig. 4.3c, means that ap-
plying special transformations, called switching equivalence or signature similarity
transformations in the signed graph theory literature [14], it is possible to obtain
a graph whose edges have all positive weights. In practice, these transforma-
tions consist of changing the signs of all the edges adjacent to a set of nodes, see
Fig. 4.3c, which can be identified by the signature matrix .S and is given either by
{ieV:ss=4+1}or{ieV:s;=—-1}.

Finally, the third condition can be used to clarify one of the properties of
the signed (opposing) Laplacian, see the first line of Table 4.1. Using the Gers-
gorin’s Theorem, it is clear that all the eigenvalues of £ have nonnegative real part.
Thanks to Theorem 4.1 it is possible to add that, in particular, 0 is an eigenvalue
of £ (with eigenvector S1) if and only if the graph is structurally balanced.

When a graph is structurally unbalanced, the question naturally arises as to
how far the signed graph is from a structurally balanced state. The standard
“measure” of such a distance is the frustration index, hereafter simply denoted
frustration, originally introduced by Harary [17, 60] for unweighted signed graphs
under the name line index of balance. It indicates the minimum (weighted) sum
of the negative edges that have to be removed in order to obtain a graph that is
structurally balanced.

Definition 4.3. The frustration €(G) of a signed graph G is defined as the min-
imum (weighted) sum of the positive edges over all signature similarity transfor-

mations of L:
n

1
= i - L]+ SLS];; 4.8
= g gy 2 2 [ 5LSk 9
s;=+1Vi l]];

P

Observe that if a signed graph G is structurally balanced, then €(G) =0 (see
e.g., Theorem 4.1(ii)).

Another (maybe more intuitive) interpretation of the notion of frustration,
which comes from the statistical physics literature3, is that the frustration is the
minimum over all possible signature matrices S of an energy functional, defined

as
n

e(S) =5 > [IL]+5LS];. (4.9)

i,j=1
VE)

DN —

Using this analogy, the frustration quantifies the amount of “disorder” in a signed
network.

3In particular from the Ising spin glass literature, see [18, 61-63], where the frustration is
defined as the energy in the ground state of an Ising spin glass.
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V1 — Vs
‘ 1 1
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Figure 4.3: Illustration of the notion of structural balance, see Definition 4.2 and
Theorem 4.1. (a): Structurally balanced signed graph. (b): Applying the signature
matrix S = diag{1,1,1,—1,—1} to the signed graph in (a) shows that SLS is a
M-matrix. (c): Equivalently, changing the signs of the edges adjacent to nodes 4
and 5 (with {4,5} = {i € V : 5; = —1}) yields a graph with positive edges. (d)
Gersgorin’s disks and eigenvalues of £ (computed for the signed graph in (a) with
weights a;; € {—1,0,1}).

In practice, the computation of the frustration (4.8) is an NP-hard problem.
Several algorithms are proposed in the literature, see e.g., [18, 21, 64], and in
particular the papers in Part II use the algorithm introduced in [21] to compute
numerically the frustration of a signed graph.

Another way to measure the level of imbalance of a signed graph G is the alge-
braic conflict, defined simply as the smallest eigenvalue of the normalized signed
Laplacian £ of G, A\1(£), which is known to be strictly positive for structurally
unbalanced signed graphs (see Theorem 4.1(iii)). In addition, A;(£) is known to
approximate well the frustration of a signed network [19, 24, 33], as shown in the
following example (inspired by [28, 33]).

—— Example 4.1
In this example a sequence of signed graphs with increasing frustration is consid-
ered and, for each graph of the sequence, the values of frustration and of the small-
est eigenvalue of the normalized signed Laplacian are computed and compared.
The sequence is constructed as follows. Each graph of the sequence G = (V,&€, A)
has card(V) = n = 500 nodes, and the edge weights are drawn from a uniform dis-
tribution (where p = 0.8 is the edge probability). The signature of G is dependent
on a parameter §§ € [0,1]: in particular, if (j,7) € £ then Pla;; < 0] = . In practice,
[ represents the percentage of edges with negative weight in the signed graph G.
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Figure 4.4: Example 4.1. Comparison between smallest eigenvalue of the normalized
signed Laplacian A1(L) (i.e., algebraic conflict in the structural balance literature
[24]) and frustration €(G), for a sequence of signed graphs with increasing frustration.

The sequence is considered for increasing values of 8, 5 € {0,0.05,...,1}, and the
frustration €(G) of each signed graph in the sequence, computed numerically using
the algorithm proposed in [21], is shown to increase. Figure 4.4 plots the smallest
eigenvalue of the normalized signed Laplacian £ vs the frustration, for each signed
graph of the sequence.




Concluding remarks

The focus of this thesis is on the study of the collective behavior in a community
of agents exchanging opinions, and on understanding how it could be influenced
by the presence of antagonistic interactions among the agents.

Several classes of models are considered for this scope. Even though different
protocols for consensus have been proposed in the literature, there are cases in
which these protocols may prove limiting/restrictive: for instance they fail to
represent situations in which the agents may want to rule out particular values
of consensus, or to impose that the consensus value respects their own “comfort
interval”.

For this reason, the first paper of this thesis proposes a new protocol for con-
sensus, denoted interval consensus, which allows the agents to impose constraints
on the achievable consensus value. It is a nonlinear interconnected model with a
Laplacian-like scheme, where saturations are introduced to describe how the agents
transmit their opinions to their neighbors in the network. It is shown that, while
during the transient the opinions need not satisfy the constraints imposed by the
agents through the saturations, asymptotic convergence to interval consensus is
achieved: the opinions converge to a common value belonging to the intersection of
the constraints (if nonempty). Formally, existence and asymptotic stability of the
equilibrium point of consensus is proven, in case of strongly connected networks.
Existence of (at least) an equilibrium point (which, in general, is not a consensus
value) is also shown when the intersection is empty, a case which is perhaps less
relevant in practical applications.

The second class of models considered in this thesis work, and introduced in
paper B, presents a similar design, in that it is characterized by a Laplacian-like
structure at the origin, and saturated nonlinearities of sigmoidal type. Differently
from the first class of models, the amplitude of the interaction part of the dynamics
is modulated by a scalar positive parameter, which plays the role of bifurcation pa-
rameter in the analysis. As the parameter is varied, the system exhibits a pitchfork

41
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bifurcation behavior: for small values of the parameter the origin is the unique
equilibrium point of the system and it is globally asymptotically stable. When
the parameter increases and crosses a first threshold value, the system undergoes
a pitchfork bifurcation and two new alternative (one positive, one negative) equi-
libria appear, which are locally asymptotically stable, and, in the particular case
of identical nonlinearities, are consensus values. The uniqueness of these three
equilibria (the origin, and the two alternative consensus equilibria) is proven for
all values of the bifurcation parameter less than a second threshold value, after
which the system undergoes a second pitchfork bifurcation and new mixed-sign
equilibria appear. The equilibrium points that the system admits for high values
of the bifurcation parameter may be stable or unstable (as shown by means of nu-
merical simulations), and, while an estimate of their total number is not provided,
their norm is shown to be upper bounded by the norm of the (stable) consensus
equilibria. Finally, it is shown in paper B that, while the first threshold value for
the bifurcation parameter is fixed/constant, the second threshold value depends
on the algebraic connectivity of the network, meaning that the “robustness” of the
consensus problem (in the sense of size of the interval of values of the bifurcation
parameter for which the system admits only three equilibria) is influenced by the
network’s topology.

The behavior of the system can be interpreted in terms of collective decision-
making, where the bifurcation parameter represents the “social effort” or “strength
of commitment” among the agents. In order to escape from a deadlock situa-
tion (where the origin is the only equilibrium point, i.e., no decision is taken)
and achieve a decision (i.e., convergence to one of the two alternative nonzero
equilibrium points is achieved), the agents need to have the “right” amount of
commitment; while this decision represents typically an agreement, disagreement
situations are always possible if the agents become “overcommitted” (i.e., the sec-
ond bifurcation threshold is crossed).

The nonlinear models considered in papers A and B are cooperative, meaning
that a decision (in general, of consensus) is reached through collaboration among
the agents. This assumption is however restrictive in many real-world scenarios,
where rivalry among the agents is inevitable. For this reason, in paper C the
nonlinear model of paper B is extended to the case of antagonistic networks, by
representing the competitive interactions among the agents through a signed net-
work. When the network is structurally balanced, the system is monotone and its
behavior is identical to the model of paper B, modulo a change of orthant: instead
of consensus, the agents’ opinions reach bipartite consensus (i.e., they reach con-
sensus in absolute value). The qualitative behavior of the system does not change
also when the network is structurally unbalanced, however the value of the bifur-
cation parameter for which the first pitchfork bifurcation is crossed is shown to
increase with the frustration of the signed network, which represents the amount
of social tension present in the community. The interpretation is that the higher
is the frustration, the higher is the social commitment required from the agents in
order to reach a decision.

This idea is then used in paper D, whose aim is to investigate the complex-
ity of government formation processes in countries with a parliamentary system,
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through an approach based on decision dynamics over signed networks. In par-
ticular, by mapping the (post-election) parliament into a signed network, and
treating the government formation process as a collective decision-making system
over a network (with parliamentary members as agents, and vote of confidence
given to the post-election new government as decision), the hypothesis, whose in-
tuition comes from the theoretical analysis of paper C, is that the frustration of
the parliamentary network should correlate with the duration of the government
negotiation talks: a long period of negotiations is to be expected when the social
tension in the parliament is high. This can indeed be seen in the real electoral
data in 29 European countries analyzed in paper D. Moreover, it is shown that the
concept of frustration of the parliamentary networks can be used also to predict
the composition of the successful post-election cabinet coalition.

The work of papers C and D (focused on social/parliamentary networks), where
structural balance theory proves significant in order to investigate and interpret
the collective behavior of multiagent systems, is one example of the relevance of
the study of signed graphs. The focus of paper E is on the structure of signed
digraphs, and in particular of a signed version of Laplacian, denoted “repelling”
signed Laplacian, and its pseudoinverse, used for instance in the context of elec-
tric networks. Passing from unsigned to signed graphs, important properties of
this Laplacian matrix, such as diagonal dominance and marginal stability, are in
general no longer guaranteed. Moreover, even in the unsigned case, the set of
Laplacian matrices is not closed under pseudoinversion. In paper E, the set of
signed Laplacian matrices that are weight balanced and eventually exponentially
positive (i.e., matrices whose exponential satisfies the strong Perron-Frobenius
property) is shown to be closed not only w.r.t. marginal stability but also to
matrix pseudoinversion.

Directions of future research

This section discusses possible directions in which the results presented in this
thesis work could be extended.

Regarding the nonlinear (possibly, antagonistic) model over networks presented
in papers B to D, it is important to observe that the pitchfork bifurcation behavior
the multiagent system exhibits is due to symmetry (in the dynamics and in the
graph), and an interesting development would be to understand the effect of per-
turbations or symmetry-breaking phenomena. One direction would be to remove
the assumption that the (signed) network representing the community of agents
is undirected. In the cooperative or, in general, monotone case (corresponding
to a nonnegative or structurally balanced graph) the intuition is that the general
behavior of the system would not change: for instance, it would still not admit
stable limit cycles. However, this would be no longer true when monotonicity does
not hold (i.e., when the signed graph is not structurally balanced): in this case,
a Hopf bifurcation might occur and periodic solutions arise. Perhaps more inter-
esting would be to study the effect of adding a constant input to the dynamics,
representing for instance external factors, or preference of the agents for a certain
alternative. This has been investigated in [4] for the cooperative case, where the
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authors use unfolding theory of a pitchfork bifurcation (see e.g. [48]) to discuss how
the preference of the agents for one of the two possible alternatives (represented
by two consensus equilibria) affects the choice they make as a group.

Concerning instead the results presented in paper E, while from one side efforts
should be spent in trying to characterize better the structure of the set of eventu-
ally exponentially positive and weight balanced Laplacian matrices, on the other
side it would be interesting to consider the possible applications of the Laplacian
pseudoinverse to signed networks: for instance, in the context of electrical net-
works, by exploring the connection between the signed Laplacian pseudoinverse
and the concept of effective resistance, which has been only briefly mentioned in
paper E.

The study of theory of eventually (exponentially) positive matrices presented
in paper E (and [57]) could also be beneficial in the context of nonlinear dynamics
over signed networks of paper C. Indeed, the way paper C extends the nonlinear co-
operative model presented in paper B to the antagonistic case is to assume that its
linearization at the origin corresponds to the version of signed Laplacian denoted
“opposing” signed Laplacian. It would be interesting instead to consider the ver-
sion denoted “repelling” signed Laplacian, and use the work of paper E (and [57])
to investigate the behavior of the corresponding nonlinear model and characterize
its equilibria (e.g., if they represent agreement or disagreement); additionally, the
results could be compared with the ones obtained for linear systems in [65].
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Abstract

The constrained consensus problem considered in this paper, denoted
interval consensus, is characterized by the fact that each agent can im-
pose a lower and upper bound on the achievable consensus value. Such
constraints can be encoded in the consensus dynamics by saturating
the values that an agent transmits to its neighboring nodes. We show
in the paper that when the intersection of the intervals imposed by the
agents is nonempty, the resulting constrained consensus problem must
converge to a common value inside that intersection. In our algorithm,
convergence happens in a fully distributed manner, and without need of
sharing any information on the individual constraining intervals. When
the intersection of the intervals is an empty set, the intrinsic nonlin-
earity of the network dynamics raises new challenges in understanding
the node state evolution. Using Brouwer fixed-point theorem we prove
that in that case there exists at least one equilibrium, and in fact the
possible equilibria are locally stable if the constraints are satisfied or
dissatisfied at the same time among all nodes. For graphs with suffi-
cient sparsity it is further proven that there is a unique equilibrium that
is globally attractive if the constraint intervals are pairwise disjoint.

1 Introduction
The basic idea of a consensus problem is to achieve an agreement among a group

of agents through a distributed dynamical system, encoding the values that the
agents want to contribute as initial conditions of a Laplacian-like system which

55



56 Paper A Interval Consensus for Multiagent Networks

represents the exchanges of information among the first neighbors of a communi-
cation graph. Owing to the Laplacian structure of the dynamics, each agent is
driven only by relative states, i.e., differences between its own state and that of
its neighbors. Various algorithms have been developed using this scheme. For
instance, the average consensus problem consists of computing the average of such
initial conditions, see [3]. In a leader-follower scenario, instead, only the initial
conditions of the leaders matter, and provide the values to which the followers
converge, see [4]. In a max consensus problem, the agents determine the max of
their initial conditions, and all settle to that value, see [5]. When cooperation
and competition among the agents coexist, a bipartite consensus can be achieved,
provided that the graph is structurally balanced, see [6].

In all these protocols, an agent has no authority to veto certain values of
consensus, or to impose that the consensus is restricted within an admissible region.
This is a drastic limitation in certain contexts. For instance, in a network of
processors trying to agree on sharing a computational load, each processor might
have constraints on the computational resources allocable to the shared task, and
accept only consensus values which are within that range. In an opinion dynamics
context, an agent might agree on a common opinion only if this is not too extreme.
In a formation docking problem, a robot might be able to achieve alignment with
the rest of the formation only if the consensus position is within a certain region.
In all these cases, what one would like to add is a state constraint to the consensus
problem.

Consensus problems with constraints have been studied from different perspec-
tives in the literature. A significant group of papers deals with the use of state pro-
jections on convex sets, mostly in discrete-time consensus problems and motivated
by optimization algorithms [7]. Projection-based methods for state constraint sat-
isfaction have been introduced also for continuous-time consensus problems, using
projection operators inspired by the adaptive control literature [8], or logarithmic
barrier functions [9]. Continuous flows can be used to solve convex intersection
computation problems when the states of the nodes are not necessarily satisfy-
ing the constraints for all time [10]. In [11] a discontinuous vector field is used
to describe the state saturation. Alternative approaches for imposing state con-
straints on consensus problems are proposed in e.g., [12, 13]. A different situation
of consensus with state constraints is the positive consensus problem studied in
[14]. In this case, the aim is to achieve consensus while respecting the positivity of
the state variables, representing e.g., quantities that are intrinsically nonnegative
(masses, concentrations, etc.).

Other types of constrained consensus problems that have been considered in
the literature include for instance the discarded consensus algorithm of [15], that
discards the state of neighbors if they are outside of certain bounds, or the dis-
tributed averaging with flow constraints considered in [16]. Sometimes instead of
state constraints one is interested in models with inputs constraints, representing
e.g., actuator saturations, see e.g., [17, 18]. The opinion dynamics literature offers
several other contexts in which models are endowed with state constraints in order
to better represent a phenomenon. In [19] for instance, interactions are unilateral,
i.e., are considered only if the state of the neighboring nodes is higher than the
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agent’s state for optimistic models, or lower for pessimistic models. A different ap-
proach, used in opinion dynamics, is proposed in the so-called bounded confidence
models [20, 21], in which states that are more distant than a certain threshold
ignore each other. The result is that these models produce clusters of opinions,
and a local consensus value within each cluster. Various variants of this opinion
dynamics problem have been proposed, to accommodate other constraints in addi-
tion to bounded confidence. For instance in [22] the sign of the initial conditions
is maintained throughout the opinion clustering process.

The problem we intend to study in this paper is different from all the aforemen-
tioned state-constrained consensus problems. The main idea we want to introduce
in a consensus problem is that we want to give to each agent the possibility of
limiting the interval of values in which a consensus value can be accepted, and
therefore force the agreed consensus value to belong to the intersection of all such
intervals, if such intersection is nonempty. The constraints we want to impose are
however not classical hard constraints on the state variables. Rather, they should
only condition the range in which the steady state consensus value belongs to, but
should be trespassable during the transient evolution. To distinguish our problem
from these other forms of consensus with hard-wired constraints, we call it interval
consensus.

It is worth observing that our interval consensus problem is not related to the
notion of “bipartite interval consensus” introduced in [23]. In that paper, in fact,
lack of strong connectivity of the graph is used to achieve some form of contain-
ment control (or leader-follower scheme [4]), but no common value (monopartite
or bipartite) is achieved. In our problem, instead, the objective of the agents is to
achieve a common consensus value, in spite of the interval constraints imposed by
each of them.

Technically an agent implements an interval consensus by transmitting a value
of its state which is saturated between an upper and a lower bound. By limiting
the transmitted state we can skip the projection step, and obtain the same re-
sult of imposing constraints on the consensus value although only asymptotically.
Practically it means that the agents keep seeking a compromise value fitting all
constraints, and it is only through “stubbornly” transmitting a saturated value to
its neighbors that an agent manages to carry the common consensus value within
the interval imposed by its constraints. Clearly, properties like the presence of a
conserved quantity in average consensus, or the “diffusion-like” structure of any lin-
ear consensus algorithm are lost when the constraints become active. In particular,
when this happens the terms in the vector field that drive the consensus may no
longer represent relative distances between agents states, meaning that the overall
dynamical system behaves like a (Lipschitz continuous) switching system. Never-
theless, in the paper we show that when the intersection of the intervals admissible
by the agents is nonempty, a consensus is always achieved, and convergence must
necessarily be to a value in the intersection.

In our model each agent decides independently what saturation values to choose
for its interval. Consequently, there is no guarantee that the intervals have a
nonzero intersection. When the intersection is nonempty (the most interesting
case from an application perspective) our results provide a complete and global
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description of the behavior of the system. The system is marginally stable inside
the intersection of the allowed consensus intervals, but is asymptotically stable
outside it, because of the saturations. When the intersection of the admissible
intervals is instead empty, the analysis of the model turns out to be much more
challenging, and we could obtain only partial results on the uniqueness and stabil-
ity character of the equilibrium points.

It is worth mentioning that the case of nonempty intersection of the admissible
intervals is the only one treated in the papers dealing with state constraints. Fur-
thermore, in this literature invariance of the dynamics to the interval intersection
is typically imposed. In continuous time, saturation of the dynamics by itself is
not enough to guarantee forward invariance of the interval intersection. In fact,
in order to avoid excursions of the dynamics outside the intersection, one needs
to resort to vector fields with special structure, like projection operators or dis-
continuities, which however render the dynamics significantly more complicated
and add additional burden to the problem. In [9] for instance the logarithmic bar-
rier approach requires the agent to make use of auxiliary variables that must be
transmitted alongside the state variables. The model [11], which imposes forward
invariance of the interval intersection by means of a discontinuous vector field, is
problematic to deal with because uniqueness of the solutions might be lost at the
saturation points. Also the projection-based approach of [8] relies intrinsically on
rendering the interval intersection invariant, and can only be applied under that
assumption. In general, to the best of our knowledge, none of the available meth-
ods deals with the case of empty interval intersection and even for the case of
nonempty intersection the analysis is restricted to initial conditions already inside
the interval intersection (i.e., global attractivity of the intersection is never shown).
For this last case our analysis is instead global.

In the paper we treat both the continuous-time and discrete-time interval con-
sensus problems. In both cases we normally assume that the graph of interactions
is directed and strongly connected. Needless to say, our interval consensus protocol
respects the fully distributed nature of the problem, including for what concerns
the individual upper and lower bounds, which are unknown to the other agents.

2 Problem Definition

2.1 The Model

We consider a network with n nodes indexed in the set V = {1,...,n}. The struc-
ture of node interconnections is described by a simple directed graph G = (V,€),
where each element in £ is an ordered pair of two distinct nodes in the set V. The
neighbor set of node ¢ in the graph G is denoted N; := {j : (4,7) € £}. Each edge
(j,%) € € is associated with a weight a;; > 0. Each node m holds a state z,,(t) € R
at time ¢ > 0. Instead of z,(t), the node transmits to its neighbors in V a value
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Y (Tm(t)) lying within an interval Z,, := [pm,¢m], where

Pm, if 2 <pm;
Um(2) =92  if pm <2< gms (1)
qm, it 2> qm.

The evolution of x;(t) € R is therefore described by

%mi(t) = 3" ay (vl () —w0)), i€V (2)

JEN;

The nonlinear consensus system (2) will be studied in this paper.

2.2 Examples

A few more specific examples in which our notion of interval consensus is of interest
are the following.

e Achieving a price agreement among shareholders. Assume the board members
of a company are negotiating a buy or sell order, and have to find an agree-
ment among themselves on a price, price for which each of them is imposing
boundaries. If unanimity of the board is required, then the request of a consen-
sus value that respects everybody’s constraints has priority over for instance a
consensus value which preserves the average of the initial bids.

e Load sharing under load assignment constraints. A network of computational
units must share in equal parts a certain workload, under the constraint that
each unit can allocate to the workload only a certain amount of resources, not
known a priori to the other units. When is it possible for the units to agree on
an equal load sharing policy and how?

e Social interactions under observer effect. The observer effect is a generalization
of the DeGroot type social interaction rule [24], accounting for the fact that in
face-to-face interactions opinions exchanged tend to be more “moderate” than
they are in reality [25, 26]. In particular, an agent tends to avoid assuming
extremist opinions in a debate, but instead let them fall in a “comfort interval”
shared with the other agents. Seeking a consensus under such observer effect
can be modeled as a saturation in the values of the transmitted opinions, as we
do here.

In each of these cases, constraints are part of the problem, and if a consensus
solution exists, then it has to respect them. There is however no need to impose
that the transient dynamics respects them, i.e., the constraints are soft, not hard,
as captured by the model (2).

2.3 Paper Outline

The behavior of (2) depends crucially on the intersection of intervals (1, _;Zp:
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(i) When the intersection is nonempty, (1 Zm # 0, then the system (2) always
achieves a consensus value belonging to that intersection. This case is the
most interesting from an application point of view. A complete analysis of its
behavior is provided in both continuous-time (Section 4) and discrete-time

(Section 6).

(i) When instead the intersection is empty, (), _1Zm = 0, then (at least) an
equilibrium is always present, but it is typically not a consensus value. As
shown in Section 5, only in some special cases uniqueness and asymptotic
stability can be proven explicitly, although numerical simulations (Section 7)
suggest that a unique global attractor should be present in all cases.

3 Background Material

Due to the nonlinearity in the network dynamics (2), our work relies heavily on
tools from nonlinear systems, non-smooth analysis, and robust consensus which
are now briefly reviewed.

3.1 Cooperativity

Let y=[y1 - yn]T,2=[21-- 24]T €R™. Wesay y < z if y; < 2; for all i. We next
consider an autonomous dynamical system described by

d T
20 = f@®) = [Ai@@). falz®)] 3)
where f:R"™— R" is Lipschitz continuous everywhere. Let x(¢,y) be the solution
of the system (3) with 2(0) =y. We recall the following definition.
Definition 1. The system (3) is cooperative if y < z implies x(t,y) < x(¢,z) for
all y,z € R™

Cooperativity is a special case of monotonicity [27], in correspondence of a
Jacobian matrix which is Metzler. An effective test for cooperativity of the dy-
namical systems from properties of the vector field relies on the so-called Kamke
condition [28, Theorem 12.11, p. 581]. The system (3) is cooperative if and only if

y<zandy, =z = fi(y)<fi(z)

holds for any ¢ =1,...,n. It is easy to verify this condition for the network dynam-
ics (2). In fact, let

fi(w) = Z Qjj (wj(xj) —xi) , 1eV.
JEN;

Then y < z and y; = z; implies ¥ (y;)
to show. Hence, since a;; > 0, ¥;(y;)

¥;(z;) for all j € N; as it is straightforward
¥;(z;) for all j € Nj and y; = z; imply
<

Fiw) = ai (Wi(yy) —21) <Y aij ((25) — 1) = fil2).

JEN; JEN;

IAIN

Therefore, (2) is a cooperative dynamical system.
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3.2 Limit Set, Dini Derivatives, and Invariance Principle

Consider the autonomous system (3), where f:R? — R¢ is a continuous function.
Then Qo C R? is called a positively invariant set of (3) if, for any tp € R and any
x(to) € Qo, we have z(t) € Qo, t > 1o, along every solution z(t) of (3).

Let « : (a,b) — R? be a non-continuable solution of (3) with initial condition
x(0) = zg, where the time interval is such that —co < a < b < oco. We call y an
w-limit point of x(t) if there exists a sequence {t;} with limy_, o tx = w such that
limg_yo0 (tx) = y. The set of all w-limit points of z(t) is called the w-limit set of
z(t), and is denoted AT (x(). The following lemma is given in [29, Appendix III
(Theorems at pp. 364-365)].

Lemma 1. Let x(t) be a solution of (3). If z(t) is bounded, then AT (zg) is
nonempty, compact, connected, and positively invariant. Moreover, there holds
z(t) = AT (x0) as t — w with w = co.

The upper Dini derivative of a continuous function r : (a,b) — R at ¢ is defined as

d*r(t) = limsup M

s—0t

When r is continuous on (a,b), r is nonincreasing on (a,b) if and only if d*r(t) <0
for any t € (a,b).

Now let z(t) be a solution of (3) and let V : RY — R be a continuous, locally
Lipschitz function. The Dini derivative of V(x(t)), d*V (x(t)), thereby follows the
above definition. On the other hand, one can also define

d;{V(x) = limsup Vietsf(z) = V() ) (4)
s—0t S

namely the upper Dini derivative of V along the vector field (3). There holds that

dfV(z) t ()

f

o =4V (2(1)

when putting z(¢.) = 2* [29]. The next result is convenient for the calculation of
the Dini derivative [30, 31].

Lemma 2. Let Vi(z) :R? =R (i=1,...,n) be C! and V(z) = max;—1,._, Vi(z).
Let 2(t) € R? be an absolutely continuous function over an interval (a,b). If1(t) =
{ie{1,2,...,n} : V(x(t)) = Vi(x(t))} is the set of indices where the maximum is
reached at t, then d*'V (x(t)) = max;c Vi(z(t)), t € (a,b).

The following is the well-known LaSalle invariance principle.

Lemma 3 (LaSalle (1968), Thm 3.2 in [29]). Let x(¢) be a solution of (3).
Let V :R% — R be a continuous, locally Lipschitz function with d*V (z(t)) < 0
on [0,w). Then AT (zg) is contained in the union of all solutions that remain in
Z:={x: d}FV(x) =0} on their maximal intervals of definition.
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3.3 Robust Consensus

The following lemma deals with a robust version of the usual consensus problem,
and it is a special case of Theorem 4.1 and Proposition 4.10 in [32].

Lemma 4. Consider the following network dynamics defined over the digraph G:

il‘z(t) = Z Qi (.Z‘j(t) - l‘l(t)) +w;(t), i=1,...,n (6)

dt e~

where w;(t) is a piecewise continuous function. Let the initial time be t = t, and
the initial condition be x(t,) = x«. Let G contain a directed spanning tree. Denote

[w(®)l[ft,.,00) == max  sup [w;(t)].
[F+,00) 1€V te[ty,00) '

Then for any € > 0, there exists § > 0 such that

[w®lljty,00) <0 = limsupmax |2i(t) —a;(t)] <e
’ t——4o0 HJEV

for any initial value x..

4 Nonempty Interval Intersection: Interval
Consensus

Denote x(t) = [x1(t) --- 2, ()] the network state. Let xo = [£1(0) - 2,(0)]” be
the network initial value. The following theorem says that node state consensus
can be enforced by the interval constraints node dynamics if the intervals admit
some nonempty intersection.

Theorem 1. Suppose (', _1Zm # 0 and let the underlying graph G be strongly
connected. Then along the system (2), for any initial value xq, there is a ¢*(xg) €
N _1 Ly such that limy_,ooz;(t) =c*, i € V.

m=1

Remark 1. It is worth observing that Theorem 1 is not valid if we replace the strongly
connectivity of G with a weaker condition, like G containing a directed spanning tree. In
fact in the latter case only the state of the root nodes matters when achieving an (uncon-
strained) consensus value, and such states may not be compatible with the saturations
imposed e.g., on the leaf nodes, meaning that consensus may not be achieved even when

Ny Zm = 0. -

The condition (1,1 Zm # 0 is equivalent to p, < g, with
= maxp; = 1ming;.
Px a Di, qx e q;

When such condition holds we have ()5, _1Zm = [P« q«].
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4.1 Proof of Theorem 1

We proceed in steps.

Step 1. Introduce H(xz(t)) = max{max;cyz;i(t),q:}. Clearly H is continuous
and locally Lipschitz. If H(x(t)) > g«, then max;cyx;(t) > g« for [t,t +¢€) for
some sufficiently small €. Let lo(t) := {j : z;(t) = max;cp x;(t)}. As a result, from
Lemma 2,

dYH(z(t)) =d" rlnealgcxl(t) = irerll(?(}t() z;i(t) = ig}ggti) <_j§i aij(zi(t) — 1/’](%(75))))
(7)

Let ig € lo(t). Then z;,(t) > x;(t) for all j. Moreover, by definition we have
qj > gq«, which implies:

(1) by (8)) < (8) if 25(8) > a3

(if) by (2;(t) < gs if 2j(t) < g
Combining the two cases we can conclude that x;, (t) —;(z;(t)) > 0 since 4, (t) >
¢« From (7) we further know that d*H(x(t)) <0 if H(z(t)) > g«. This in fact
further assures that if H(x(t«)) = g«, then H(x(t)) = g« for all ¢t > t.. We have
proved that H(x(t)) is a nonincreasing function for all ¢.

Also introduce h(z(t)) = min { min;ey z;(t),p« }. The same argument leads to
dTh(z(t)) >0, i.e., h(z(t)) is a nondecreasing function for all t. Consequently, for
V(x(t)) = H(z(t)) — h(z(t)), there holds d™V (x(t)) < 0.

Step 2. Denote! Z:={z:d*V(z)=0}. In this step, we show Z C [p,qs]" when
G is strongly connected.

We use a contradiction argument. Let z* = [z} --- 23] € Z with o* € [ps, q.]".
Then there must be a node i satisfying x} € [ps«,q:]. By symmetry we assume
x] > g, and without loss of generality we let zj = max;ey x;‘ Let us consider a
solution z(t) of (2) with z(0) = z*.

Denote |, := {j : o} = 2] = maxyey ) }. Because G is strongly connected,
along the system (2), nodes in |, will either be attracted by other nodes (if any)
in V\ I, which hold values strictly smaller than z, or simply by g.. Therefore,
there is € > 0 such that z;(e) < « for all j. This is to say, H(x(e)) < H(x(0)) and
therefore the trajectory cannot be within Z. We have proved Z C [ps,q«]"

Now by Lemma 3, AT (xq) is always contained in Z, and therefore AT (xq) C
[p«,q+])™. Further by Lemma 1, there holds?

2(t) = [per " (8)
as t — oo.
Step 3. By (8), for any § > 0, there is a finite T'() > 0 such that along (2), there
holds

|z (t) — Yi(2i(t))] <

Q>

IMore precisely, it is the Dini derivative of V along system (2). But by (5), there is no harm
writing it in this way.
2From the properties of V', each trajectory is obviously contained in a compact set with w = co
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for all ¢ > T(6) and i € V, with a = max{|a;|-card(N;) : (j,i) € £}. We can
therefore rewrite (2) as

&xl(t) =— Z aj (xz(t) — xj(t)) + w; (), (9)
JEN;

with
wit) =Y aij(v(w; (1)) —2;(1)),
JEN;
and conclude that the following claim holds true.

Claim. For any 0 > 0, there is a T'(0) > 0 such that |w;(t)| < 4 for all t > T'(4) and
1€V, ie., ||U)(t)||[T(5)700) <.

Consider the sequence € = % for k=1,2,.... For any fixed k, Lemma 4 can be
invoked to conclude that we can find a dj such that if [[w(t)||};, o) < g for some
t« > 0, then

limsup max |z;(t) — z;(t)| < €. (10)
Then, from the above claim, for such d there exists indeed a T'(d;) for which
[wi(t)] < 6 for all t > T(6y) and i € V, i.e., |[w(t)|l1, 00) < Ik for t =T(dx). As a
result, for any fixed k, (10) holds. In other words,

{(z0) := limsup max |z;(t) — z;(t)]
t—+oo HLIEV

is a well-defined constant for which it holds 0 < ¢(zg) < % for all k. As a result,
£(x0) =0, hence
t_lg_rgloo |2i(t) —2;(t)] =0

for all 7,5 € V.

Step 4. In this step, we finally show that each x;(t) admits a finite limit. Let ¢*
be a limit point of ;(t) for a fixed j. Based on the fact that Z C [ps,q«]", there
must hold ¢* € [ps,q«]. If p« = g«, the result already holds. We assume p, < ¢, in
the following.

According to (10), for any € > 0, there exists ¢, > 0 such that

|zi(te) — | <. (11)

for all i. There are three cases.
(i) Let ¢* € (p«,q«). We let € be sufficiently small so that

Pe < —e<ai(ty) < He< g
for all ¢. This means the system (2) is a standard consensus dynamics for

t >ty because ;(x;(t)) = z;(t) for all t > t.. Of course all z;(¢) converge to
the same limit, which must be c¢*.
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(ii) Let ¢* = g«. We let € be sufficiently small so that
Px < gx — € < Qx.

As a result, px < x;(tx) < g« + € for all i. Repeating the argument we used
in Step 1, it is easy to see that max;cy x;(t) is nonincreasing for ¢ > ., and
therefore it converges to a finite limit, say M,. While from (10), min;ey x;(t)
must converge to the same limit M,. This leaves ¢* = ¢, = M, to be the
only possibility, and all z;(t) converge to gx.

(iii) Let ¢* = p«. The argument is symmetric to Case (ii). By first showing that
min;ey x;(t) converges with py. < px + € < g«, we know all z;(¢) converge to

Ds.
We have now proved that all ;(¢) will converge to a common limit within [ps,q.].
The proof is complete. O

5 Empty Interval Intersection: Existence and
Stability of Equilibria

In this section, we study the network dynamics (2) when the intervals Z,,, admit
an empty intersection. To this end, we denote z(t,y) the solution of (2) with the
initial condition z(0) =y. Denote p = min;cyp; and § = max;cy¢;. It is obvious
that conv (U,,epZm) = [p,q], where conv denotes the convex hull of a set. It
turns out that, regardless of the network topology G and the intervals Z,,, the
nonlinearity of (2) always defines equilibria dynamics.

Theorem 2. The system (2) has at least one equilibrium. In fact, all equilibria
of the system (2) lie within [p,q]" if G is strongly connected.

Naturally we are interested in the stability of the equilibria. We introduce the
following definitions.
Definition 2. An equilibrium e = [e1 --- e,]7 is an equi-unconstrained equilib-
rium if e, is an interior point of [pm,gm] for all m € V; an equi-constrained
equilibrium if e,, is an interior point of R\ [py,qm] for all m € V.

Definition 3. An equilibrium e is:

(i) locally stable if for any e > 0, there exists § > 0 such that ||z(¢,y)| < e for
all t >0 and all ||y —e|| < ;
(ii) locally asymptotically stable if for any e > 0, there exists § > 0 such that
lz(t,y)|| <€ forall t >0 and all ||y —e| <0, and limy_o x(¢,y) = e for all
ly —ell < 4.
P

We present the following result for the stability of equi-unconstrained or equi-
constrained equilibria.

Theorem 3. Suppose (\,_;Zm = 0. The following statements hold for the sys-
tem (2).
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(i) Every equi-unconstrained equilibrium is locally stable;

(ii) Every equi-constrained equilibrium e = [ej - - en]T is locally asymptotically
stable if N; =0 for all i € V.

Apparently the classes of equi-unconstrained and equi-constrained equilibria
only cover a fraction of possible equilibria of the network dynamics. With pairwise
disjoint constraint intervals, i.e., Zp, (1 Zmy, =0 Y1, ma € V, we can establish a
full picture regarding the stability of the equilibria.

Theorem 4. Let the graph G be strongly connected and suppose the I,, are
pairwise disjoint. Then for the system (2) the following statements hold.

(i) There cannot exist equi-unconstrained equilibria;
(ii) Every equilibrium is locally asymptotically stable.

We conjecture that the system (2) should have a unique equilibrium which is
globally attractive when the interaction graph G is strongly connected and the Z,,
are pairwise disjoint. It seems that there are some major difficulties in establishing
such an assertion due to the nonlinear node dynamics. Nonetheless, we manage
to prove the following result for directed graphs with the in-degree no more than
one at the majority of the nodes.

Theorem 5. Let the graph G be strongly connected and assume that card(Ny,) <
2 for allm € V with the equality holding at most for exactly one node. Suppose the
T, are pairwise disjoint. Then along the system (2), there existsd = [d] ---d,,|T €
R"™ such that .

tligloxi(t,xo) =d;, i€V
for all initial values xg.

Remark 2. The value of d; depends on the network topology. For example, following
the proof of Theorem 5, assume without loss of generality that p; < ps < - - < pn and
let ig # {1,n} be a node satisfying N, = {n}; then d; =pn. If instead N;, = {1}, then

o . *_ Pn@igntq1aig1
dio =q1- IfMO = {17n}, then dZO = W. 1

Remark 3. The underlying graph G is termed a symmetric undirected graph if (z,5) € V
if and only if (j,7) € V, and a;; = a;; for all (4,7) € V. Undirected graphs would not help
too much to simplify the stability analysis because there can be the case with ¥;(z;) = z;
while ¢;(2;) = p;. Therefore locally the node interactions could be essentially directional
even with bidirectional interactions.

5.1 Proof of Theorem 2
We rewrite the system (2) as

%ﬂf(t) = g(a(t)) = [91((t)) -~ gn(2(O)]"

with g;(z(t)) = e, aij (¥j(zj(t)) — x;(t)). Now let zo € [p,g]™. Then it is
straightforward to verify that x(t,z0) € [p,q]" for all £ > 0 because the vector field
g is pointing inwards the n-dimensional cube [p,g]". This leads to the following
lemma.
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Lemma 5. The set [p,q|" is positively invariant along the system (2).

Therefore, x(t,-) defines a continuous mapping from [p,q]" to itself. By the
famous Brouwer fixed-point theorem, there is at least one point e € [p,q]™ satisfying
x(t,e) = e, i.e., e is a fixed point. We have proved existence of equilibria of the
network dynamics within the set [p,g]™. In order to further prove that there can
be no equilibrium outside the set Tg,q}” when G is strongly connected, we need

the following lemma. We introduce the notation dist(z(t), [p,q]") = |[z(t)[l}p.g» =
miny e, gn [|#(t) —y| to indicate the distance between z(t) € R™ and the set [p,q]".

Lemma 6. Let the graph G be strongly connected. Then along the system (2)
there holds for any xg € R™ that

lim dist(xz(t),[p,q]") = 0.

t—o0

Proof. Define 3(t) = max,,cy xm(t) and again let lo(t) := {j : x;(t) = max;cyp z;(t)}.
Note that, m(xm(t)) < g for all m € V and for all ¢ > 0. From Lemma 2 and
noticing the structure of the node dynamics, there holds that if 5(t) > g, then

d
+ 504 — .
4TA() = iclo(t) dt zi(t)

= ifg}?g;)jw agj (¥;(z;(t) — z:(t))

< max aij (7 — ()

JEN;
=gy 35 )
< min{a;; > 0: (j,i) € £} (7— B(t)) (12)

when G is strongly connected. Similarly, d™3(t) < 0 if 3(t) > ¢. As a result, we
can obtain limsup;_,. 5(t) <G A symmetric argument leads to the fact that
liminf; o0 5(t) > p. We have now proved the desired lemma. O
Based on Lemma 6, obviously every equilibrium must be within the set [p,q"
when G is strongly connected. This proves Theorem 2. a

5.2 Proof of Theorem 3

(i) Let the equilibrium e be an equi-unconstrained equilibrium, i.e., ep, € [Pm, Gm)]
for all m e V.

Assume first that e, € (pm,¢m) for all m € V. Under this condition on e there
exists € > 0 such that for Be(e) := {y € R : ||y — e|| < €}, there holds

d
Za(t)=—La(t), o(t)€B(e) (13)

where L is the network Laplacian. Clearly (13) is standard consensus dynamics.
Therefore e is locally stable.
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Assume now that e, € [pm,qmn] for all m € V and that there exists (at least)
an m € V such that ey, € {pm,qm}. Denote Vg, V) and VT the node sets with Vg =
{m eEV:en :qm}, Vp = {m eV:en :pm}, Y= {m eV: enc (pm,qm)}.

Then
die; = Z ai;pj + Z aijq; + Z a;jej, 1€V,
JEN;NVp JENINV, JeEN;NVT

where §; = Z]’G/\/i Qij, eV,
We divide the analysis considering each of the following 2™ orthants of Be(e)
around the equilibrium,

N(e) = {y =l vl i € T (ee) i€ V) (14)

with s; € {1,2} and

, Lo =1
T (e, = eitel si=1
(ei — 6761‘], S; = 2
We first consider the orthant described by s; =1 for all i € ¥V, which we denote
N¥ (e),
N:‘(e) = {y = [yl ‘e yn]T LY € [ei,ei + 6) Vie V}

_ For sufficiently small €, z(t) € Nf(e) implies that ¢(zm(t)) = @ (t) if m €
ViUV, while ¥(x,(t)) = ¥(em) = gm if m € V,. Hence, when z(t) € NF(e), it
follows that

S —e)=—m0+ Y apm®+ Y aye

JEN;N(VTUY,) JEN;NVq
=—Gi(zi(t)—e)+ D ay(zt)—e;), i€V
FEN;N(VTUV,)

The network dynamics can be rewritten as

%(w(t) —e)=—L(z(t)—e¢), z(t)eNS(e) (15)

where L = [I;;] is given by

6ia .7 = i7
lij = q —aj, J GMQ(]}TUVP),
0, otherwise.

If Vg =0, Viu Vp, 2 N; and L = L. Otherwise, if Vg # 0, then L = A — A where
A = diag{d1,...,0,} is the degree matrix, and each element of A is given by
aij = az; if j € NjN (f}T UVp) and a;; = 0 otherwise, for all i € V. Hence L has
nonnegative eigenvalues and the zero eigenvalue has equal algebraic and geometric
multiplicities.
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Moreover, the set N (e) = {y = [n oy iy > e Vi€ V} is positively
invariant along the network dynamics (2). This is an immediate conclusion from
the cooperativity of the system (2) established in Section 3.1. We then conclude
that there exists § > 0 such that for any zo € N{ (e), there holds z(t,z) € N} (e)
for all ¢t > 0.

To complete the proof we repeat the same reasoning for the other 2" —1 orthants
around the equilibrium described by (14). Let VT = {m € V : 2, > e} and
V- ={meV: zy <epn} Forsufficiently small €, z:(t) € N(e) implies that

Gm, meVvtny, =V,
Y(xm(t)) =< pm, mevV NV, =1V,
zm(t), meV\(V, UV, ).
Hence, as before, the network dynamics can be rewritten as
d _
7 (z(t) —e) =—L*(z(t) —e€), =x(t) e N(e) (16)

where L* = [l}’]] is given by

(si, ] = ia
=1 —ay, JENiN\VFUV),
0, otherwise.

The problem is then identical to the case NI (e).

(ii) Let the equilibrium e be an equi-constrained equilibrium, i.e., Awp(e) = Ae
where A = diag{d1,...,0,} is the degree matrix with ¢; = ZjeNi a;j, and ep, is an
interior point of R\ [pm,¢m] for all m € V. When z(t) € B¢(e), for a sufficiently
small ¢, ¥(x(t)) = 1¥(e) and hence

d
dt
Now let g € B¢(e). Then there exists > 0 such that x(¢,20) € Bc(e) for ¢ € [0, u]
simply by continuity of the trajectory. However, along the interval ¢ € [0, 1] for the
system (17) there holds ||z(t,z0) —e|| < ||zo —e]|. Therefore again we have shown
that B¢(e) is an invariant set in such case along the network system (2). The local
asymptotical stability of e is then straightforward to verify.
We have now proved Theorem 3.

(z(t) —e) = —Ax(t) + Ap(e) = —A(z(t) —e), x(t) € Be(e). (17)

5.3 Proof of Theorem 4

Without loss of generality we assume p; < p2 < --- < p, and therefore p; < ¢1 <
p2 < q2 < -+ < pn < qn. We first establish a technical lemma strengthening the
statement of Lemma, 6.

Lemma 7. Let the graph G be strongly connected. Suppose the I, are pairwise
disjoint with p; < pa < +++ < pp. Then along the system (2) there holds that for

any zo € R", limy—o0 [|2(t)/[g; pn)» = 0-
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Proof. Since the Z,, are pairwise disjoint with p; < ps < -+ < pn, we have
Pj(xj(t)) < gn-1 <pp forall j=1,...,n—1. Thus,

%xn(t) = Z Qnj (ub(%(t)) - xn(t)) < Z Qnj (%—1 —xn(t)),

JEND JENR

which implies that limsup;_ . zn(t) < gn—1. Therefore, for any zg, there is
T1(zo) > 0 such that

77Z}n(xn(t)):pna t>1T1.

Let 8(t) and lg(¢) be defined as in the proof of Lemma 6. For ¢ > T1, if 5(t) > pp,
then

dtB(t) = max ixl(t) = max Z aij (Vi (z(t)) — zi(t))

i€lo(t) dt i€lo(t )JENi
< max a;i (pn — x;(t)) = max aii(pn — B(t

ielo(t)jg\% ]( " ( )) ielo(t)jg/\:/i J( " ( ))
<min{ag; > 0: (j,i) € £} (pn — B(t)) (18)

when § is strongly connected. This in turn leads to the fact that limsup,_, . 5(¢) <
Dn- A symmetric argument will give us liminf;_, 8(t) > g1 based on the fact that
there is To(zg) > 0 that ¢1(x1(t)) = q1, t > T>. We have now completed the proof
of the desired lemma. O

We are now ready to prove Theorem 4, following a similar reasoning to the
proof of Theorem 3. Let e = [e1 --- e,]” be an equilibrium. From Lemma 7 and
its proof there must hold ¢ (e1) = ¢1 and ¥ (en) = pp, With e; > ¢1 and e, < pp.
We denote VT the node set with VI := {m €EV: en €R\ (pm,qm)} and VT the
node set with VI =V \ Vi. Then

0,6 = Z Qijk; + Z a;i;€j, 1€V,

FEN;NVT JeEN;NVT

where §; = ZjeM a;j and kj = p; or ¢; for all j € NV; N V. There holds Vi = )
since {1,n} € V1. Let us introduce

e):={y=n 1y; € [eiei+€) Vie V).

For sufficiently small €, z(t) € N} (e) implies that ¥(z,(t)) = 2, (t) if m € VT,
while ¥(z, (1)) = w(em) = km if m € V. Hence, when z(t) € N} (e), it follows
that

d
7 (@i(t) — e1) = — i (1) Y agri+ Y agm(t
jEN;NVT jeEN;NVT

=—6; (x;(t) —e;) + Z aj (.%'j(t) — ej) , 1EV.

JEN;NVT
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The network dynamics can be rewritten as

%(x(t) —e)=—L(z(t)—e), z(t)eNI(e) (19)

where L = [l_w] depends on the structure of V1, and is given by

52" .] = 7:7
lij =4 —ai;, jEN;NVI,
0, otherwise.

Now that G is strongly connected and {1,n} € VI, the matrix —L is Hurwitz since
it is weakly diagonally dominant and irreducible with negative diagonal entries
[33]. Therefore, given I,, as the n dimensional identity matrix, there exists a
unique symmetric positive definite matrix P such that

PL+LTP=1,. (20)

We establish two facts.
F1. N*(e {y =[y1-yn)l tyi > e Vi€ V} is positively invariant along the

network dynamics ( ). This is an immediate conclusion from the cooperativ-
ity of the system (2) established in Section 3.1.

F2. From the Lyapunov equation (20) we can routinely obtain

_ Amax (P)
)\max P
li(t) —el]? < e~ Pmm P2 ) — ]2
Amin (P)
along the linear dynamics % (z(t)—e) = —L(z(t) —e).

Combining the two facts, we conclude that there exists é > 0 such that for any
zo € Nj (e), there holds z(t,z¢) € Nf (e) for all t > 0. Further, it is straightforward
to verify that lim;_, (¢, 20) = e if 29 € N (e).

In order to complete the proof we also need to consider the other 2" —1 orthants
around the equilibrium

Ne(e) := {y =l iy €T (ere) i€ V}
with s; € {1,2} and

] e , =1 )
T (e €) = leieite), s , ieV.
(ei—e7ei], SZ‘ZQ

For each Nf(e) we can use the transform
yi = —x; +2e;, if jisi (e,€) = (e; — €, €4);
Yi = X, if Zsi(e,e):[ei,ei+e).

Then the problem will become identical to the case of N (e). This concluded the
proof of Theorem 4.
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5.4 Proof of Theorem 5

The proof relies on the intermediate statements in the proof of Lemma 7 that

wl(xl(t» =(q1, ¢n(9€n(t)) = Dn

for all ¢ > max{T1,T»}.

Since card(N,) < 2 for all m € V with the equality holding at most for exactly
one node and since G is strongly connected, there must be a node igp ¢ {1,n}
satisfying N, = {1}, Nj, = {n}, or N, = {1,n}. Consequently, from the network
dynamics (2) it is obvious that there is a d:o such that limy oz, (t) = d:o. The
continuity of ¥;, () in turn implies

g, (@i (£)) = i (5 ).

Next, there exists a node i; # ig with Aj, € {ig,1,n} since G is strongly connected.
From the fact that ¢, (2, (t)) converges to finite limits for m € {ig,1,n}, we
further know that there is a d; such that lim; o0 4, () = d;. This can be shown
using the following argument: let lim;_, oo b(t) = b* and consider

a(t) = —(a(t) —b(t)) = —(a(t) — b*) +£(¢) (21)

with £(t) = b(t) — b*. Since £(t) — 0, then a(t) — b*. We will now apply this
argument to our problem.
If Vi, = {io}, then the evolution of x;, (t) is described by

@iy (8) = @iyig (— (i, () = Yig (2ig (1)) ) (22)
Let a(t) = Ty (t)7 b(t) = wio(xio(t))a b* = ¢i0(d;60); and f(t) = wio(xio(t)) -

Vi (d:o). Then (22) can be rewritten in a similar form as (21),

a(t) = @i (= (alt) = b") +£(1))-

Since £(t) — 0 as t — oo, then a(t) — b*, i.e., x;, (t) — d; = 1y, (d:o). Instead, if
Ni, = {io,1}, then the evolution of z;, (t) is described by

By () =— > aijrg(t)+ Y aivi(z(t) (23)
1

Jj=to, Jj=to,1

Let a(t) =Ty (t)7 b<t) = (ahio +aill)il(ailiowio(xio(t)) +ai11wl<xl(t)))a b* =
(@yi0 + aill)_l(@ilio%o(d;) +ai1q1) and £(t) := b(t) —b*. Then (23) can be
rewritten as
a(t) = (aiyip+aip1)- (—(a(t) =b") +£(t)).
ailiowio(d:O)JFailllIl
@iyigtaigl

Since £(t) — 0 as t — oo, then a(t) — b*, ie., z;, (t) = d; =
. * i1ig Vi d: +ai nPn
Similarly, if N, = {io,n}, then x;, (t) = d; := o a,0F fi, Yanb
ZIZO ’Ll’ﬂ
can be repeated until all nodes in the set V have been visited, which implies the
conclusion of Theorem 5.

. This recursion
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6 Nonempty Interval Intersection in Discrete-Time

Let us consider the discrete-time network dynamics analogous to (2) as below:

xi(t+1)=z;(t)+e Z Qi (w] (.%‘](t)) — ,’Ez(t))

JEN;
= (1 —€ Z a¢j>xi(t) +e Z aijwj(xj(t)) (24)
JEN; JEN;

for all i € V. Clearly (24) is the Euler approximation of (2) with € a small step
size.

Theorem 6. Suppose (\'_1Zm # 0 and let the underlying graph G be strongly
connected. Suppose e < 1/max;ey ) e, aij- Then along the system (24), for any
initial value xq, there is ¢*(xg) € (\;,_1Zm such that

li (t)=c*, i .
tgéloxz(t) ¢, ieV

Proof. The proof has to rely on some new development from the proof of The-
orem 1 since we cannot use LaSalle invariance principle. We continue to use the
definitions of H(x(t)), h(x(t)), and V(x(t)), but defined over the discrete-time
system (24). Again we proceed in steps.

Step 1. In this step, let us establish the monotonicity of the functions H(x(t)) and
h(z(t)). We introduce a function I} (-) by I} (y) = y,y > a and I} (y) = a,y < a.
Therefore,

H(z(t+1)) =1/ (maxxi(t+ 1))

<%

= I;’_ (rlnea‘;( ( 1 —€ Z a” xzi(t)+e Z aiﬂ/}j(l‘j (t))))
JEN; JEN;

gltj (rlnezgc( 1—€Za” 0 (z4(t +£Zaw 0 acj ))
JEN; JEN;

<I (rglgj{( (1-¢ Z aij)1 maxx] )+e Z ai L, maxa:] (t))))
JEN; JEN;

=11 (1], (maer; (1) ) = H (1), (25)

where the first inequality holds due to the definition of Ig'*(-), and the second
inequality is based on the monotonicity of I;}; (+) as well as the assumption that
€ <1/maxjey ) e, aij. We can use a symmetric argument to establish h(z(t+

1)) = h(x(t)).
Step 2. From the conclusion of the previous analysis, there are two constants H,
and hy such that

tlg(r)loH(a:(t—&— 1)) = H., tlgéloh(x(t—k 1)) = hs.
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Note that there always holds Hy > g« > px > hs. In this step, we prove ¢, = H.
and py = hy.

We use a contradiction argument. Let us assume for the moment p, > h, in
order to eventually build a contradiction.
Fix a time s and take a node ig with z;)(s) = minjeyx;(s) < hy < ps. Such a
node always exists in view of the fact that p, > hs = limy oo min{min;ey x;(t),p« }.
The graph is strongly connected, therefore there must exist a node i1 # ig that is
influenced by node ig in the interaction graph, resulting in

zi (s+1) = (1—6 Z ailj)$i1(8)+5 Z aildej(iEj(S))

JENG, JENG
=(1=e ) anj)ai(s)te D aigiy(w;(s) +eaiyigthio(ig(s))
jENil j¢io€/\/i1
<(l-¢ Z ailj)I;r* (meaéix](s)) +e Z ailea: (meaécxj(s)) + €04, iy D+
jENil J j:tioENil J

= (1 — a1, (I;leagﬂfj(S)) + 04,50 P+

<(1- G)I[J{* (Ijneang(s)) + Op, (26)

for

f=min<e min {a;;:1# j,a;; 20 ,min{l—e a"} ,
{ ( ')eg{ ij J» Qij } ey Z ij }

J JEN;

where in the first inequality we have used

iy (s) <T (I;lgng(S))a Yi(x(s)) <If (f;leagfﬂj(S)), Vig (w4 (1)) < ig (ha) < pss

and the second inequality is due to the fact that I;L(maxjey :cj(s)) > py and

EQiyig = 0.
On the other hand, for node iy, we have

xio(s—i-l) = (1—6 Z aioj)xio(s)—I—E Z aiojwj(acj(s))

jeNiO ]GN'LO

< (1—5 E aioj)p*+(5 E aioj)I;;(maxxj(s))
] . JEV
JEN;, JE€NG,

<Op.+(1-6)L (gleang(s))

Therefore, for k =1ig,i1, we have

k(s +1) <Opa+ (1-0) I, (maxa;(s))
J
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Continuing to investigate time instant s+ 2, we have

op(s+2)=(1—¢ > apj)ae(s+1)+e Y apjibj(aj(s+1))

JENR JEN)
(1—e¢ Z ap;) (0p« +(1—-0)1 *(maxa:j(s)) + (e Z akj)It(maxxj(s))
JeM ( JjeY ) JEN, q %
=0p.+ G(Ejg\;k ak;) (I;; (I]ngé(x](s)) —p*> +(1-0)I, (r]nea)im](s))

<Op,+6(1-0) (I;r* (r]rlleaﬁcxj(s)) —p*) +(1-9) Il (Ijnea‘icxj(s))

=0%p.+(1— 92)132 (rjl‘rleaémz:j(s))7 k=1p,11.

This recursion gives us

2k(s+7) = 07pa+ (1= 071, (maca ()

for k =1ig,i1, 7T =1,...,n— 1. Note that i is influenced by either ig or i1, and
without loss of generality we assume it is 41 that is affecting io. Then

Tiy (s +2)

= (1= aij)mip(s+ 1)+ > aipjthj(w(s+1)) +eaiyiy iy (ziy (s+1))
JEN, J#i1EN;,

(1—eai,i )1, (I]T.leagfﬂj(S)) + iy ((1 —0)I,. (lglgng(S)) + 9;0*)

IN

<(1-0)I (rfeaﬁ(x](s)) + 9((1 - G)Ii (rjneaécxj(s)) + Gp*)

=(1- 92)1(;; (Ijneagx](s)) + 0%p,. (27)

A similar recursion leads to
Tiy(s+7)<(1-07) I;]i (mea]imj(s)) + 0" py
J
for 7=2,...,n—1. The strong connectivity of the graph allows us to continue the

process until all nodes are visited, leading to

rp(s+n—1)< (1—0”_1)I$(m€a§<x]’(s)) +6m1p, (28)
J

for k =1g,...,in—1, and thus

-1 —1
rjnea)im](s—i—n—l) (1—-6" )IL(I}@&{@(S))—F@” D (29)

with k =1ig,...,9n—1.
At this point we investigate two cases.
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(1) Let px < Hy. In this case, for sufficiently large s, I;r* (maxjev x](s)) will be
so close to H, that

(1— 9”_1)121’; (Ijnea‘}xj(s)) + 6" p, < H,.

Therefore, (29) implies that max;jcy z;(s+n—1) < H, for all s that are suf-
ficiently large. From the definition of H(z(t)) and H,, we can only conclude
H, = qs. As aresult, max;ey x;j(s+mn—1) < g« for sufficiently large s, which
implies that there exists 7' > 0 such that

¥y (1) <Tp, (maxa;(1))

forall jand all t >T.

This means, the term I (maxjcyz;(s)) in eqs. (26), (27), (28) can be
replaced by L} (maxjeyxj(s)) for s > T. In this case (29) becomes

A ~1yp+ A -1
r;leaéix](s+n— < (1—-60"")L;, (r]ngﬁ(:cj(s)) +0"

for all s > T'. Letting s tend to infinity from both sides of the inequality we
know limsup, ., max;jey ;(t) < ps.
(2) Suppose ps = Hy. Then, limsup, ., max;jey x;(t) < ps = H,.

Therefore, there must hold true that limsup,_,,, max;cyz;(t) < p«. On the
other hand, ps > hs implies that there also holds true lim; oo minjcy x;(t) = hy.
An immediate conclusion we can draw from the structure of the algorithm is that
it can only be the case limsup, , ., max;ecy x;(t) = p«, because otherwise there is
a node i, with ¥;, (x;,(t)) = ps for all ¢ that are large enough. However, even
limsup;_,, max;jcyx;(t) = p« ensures that there must always be nodes whose
states are arbitrarily close to p, for an infinite amount of times, a similar contra-
diction argument would clarify that in that case lim; o, minjey xj(t) = px holds
as well. This contradicts our standing assumption py > h..

We have now proved p, = h,. A symmetric argument leads to ¢, = H, as well.
Step 3. We rewrite the update of node i as

zit+1)=(1—¢ Y aij)zi(t) +e Y aija;(t) +w;i(t) (30)

JEN; JEN;
with w;i(t) =€ e aij (¢j(z(t)) —z;(t)). Then we can reach

limsup max |z;(t) — z;(t)| = 0. (31)
t—+oo0 LIEV

by the robust consensus results for discrete-time dynamics [34]. The final piece
of proof for node state convergence follows from the same argument as the proof
for continuous-time dynamics, and then we finally have lim;_,c0 2:;(t) = ¢* for all
with ¢* € [p«,g«]. This completes the proof. O
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7 Numerical Examples

In this section we first consider a case in which the intervals Z,, have nonempty
intersection, and then an empty intersection case. Our third example is a cycle
graph also with empty interval intersection for which the equilibrium point can be
computed explicitly.

—— Example 1

In Fig. 1 an example of interval consensus on strongly connected graph with n =15
and adjacency matrix

0 0 0.3360 0 0
0.0451 0 0.0465 0.0104 0.0641
A= 0.2096 0 0 0 0.1768
0.0054 0.0012 0.0038 0 0
0.0759 0.1650 0 0 0
is shown in which (,_1 Zm = [p«, ¢«] # 0. In the left column the consensus value

c* is strictly inside the interval [ps, g«]. In the right column instead ¢* is on the
boundary of [ps, ¢«] (¢* = pi) and it is clearly driven there by the saturation on
¥ (x). Notice that, unlike for a standard consensus problem, in the process of
converging max;{z;(t)} — min;{z;(¢)} is not monotonically decreasing, see Fig. 2.
Notice further that zg need not belong to @7, [ps, @] = [p1, q1] X -+ X [pn, @n], i€.,
convergence is for any zg € R”. As Fig. la and Fig. 1c show, zo ¢ Qi [pi, ¢i]
does not necessarily lead to ¢* on the boundary of [px, ¢«].

—— Example 2

In the n = 5 example of Fig. 3, the graph is strongly connected (the same adjacency
matrix of Example 1 is used), but the intervals Z,, have empty intersection, i.e.,
Mm—1Zm =0, and are not pairwise disjoint. Numerically the system (2) admits a
unique equilibrium point which is not a consensus value, but which appears to be

asymptotically stable in the entire R?.

—— Example 3

In this example, we still consider empty intersection between the sets, that is,
Nre1Zm = 0 or, equivalently, g, < p«, and in addition we assume that p; < ps <
-+ < pp and q1 < --- < qn. The intervals need not be pairwise disjoint. We
show that if the graph is a particular (strongly connected) cycle graph (which has
card(N,,) =1 for all m, see Fig. 4a), then (2) admits a unique equilibrium point
e which is in [g«,p«]™. This special case is interesting because it is possible to
compute e in an explicit way, directly from the p,, and ¢,,. The adjacency matrix
A = [a;;] has the following cyclic structure:

1720, j=i+1 0, j=1
aij = Gt =5 ] ?+ fori=1,...,n—1, and a,; = @n1 =5, J
0, j=i+1 0, j=1.
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Figure 1: Example 1. Two simulations from different initial conditions. Top row:
the trajectories z(t) of the agents are shown in solid color lines. For each agent the
shaded region represents the intervals [pm, gm], while the transversal dotted lines are
px and gx. Bottom row: Intervals [pm, gm] for each of the 5 agents, and consensus
value ¢* (circle) are shown in color, while the gray shaded region corresponds to
[p%, gx]. In the left column we have c¢* € (p«, g«), while in the right column ¢* = px«.

10 2
- - max;{z;(t)} - - max;{z;(t)}
- - min;{z;(t)} - = min;{z;(¢)}
—max;{z;(t)} — min;{z;(t)} . —max;{z;(t)} — min;{z;(t)}

5 -1

-5 .
0 100 200 300 400 500 0 100 200 300 400 500
t t

Figure 2: Example 1. Values of max;{z;(t)} (blue), min;{z;(¢)} (red), and
max;{z;(t)} — min;{x;(¢t)} (black) for the simulations in Fig. 1. It can be seen
that max;{z;(¢t)} — min;{z;(¢)} is not monotonically decreasing in the second case.

In this case (2) becomes
4
dt

San(t) = ant (1 (21(6) — (1) (32)

2i(t) = aiit1 (Vip1 (@i (8) — z(t)), i=1,...,n—1
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and, from Theorem 2, it admits at least one equilibrium point, which is in [p,g]" =
[p1,¢n]™. Let e be an equilibrium point of (32), that is

ei:¢i+1(€i+1), i=1,...,n—-1
en = P1(e1).
From Theorem 2, we know that e; > p1, which implies that ¥1(e;) =e1 if e1 < @1
or Y1(e1) =q if e > q1. Then
_Je, ifer<aq _Jin(er), fer<qr )pn, ifer<q
€n = . y Epn—1= . = . =Pn
q, ifer>q Ynlqr), ifer>q pn, ifer>q
because q1 = ¢« < px = pyp. Therefore
Pns,  if pn <gn—1
€n—2 = ¢n—1(pn) = " . " "
n—1, ifpn>agn
because p, > pn—1, and

) Gn—2, if pn € (qn—2,qn—1]
n— (pn)7 if pn, < gn—1 " " " "

2 .
) =9 Pn> if pp <gn—2

(&

en—3="Yn2(en_2) = .
" " " (% (Qn—l)a if pp > qn1 .

Gn—2, ifpp>qn

DPn, if pn < gn—o.
Iterating yields

In—i+1, if pn>qnoit1
Dn, if Pn < Qn—it+1

€n—i =

_ {Qn—Z» if pn > qn—2

and in particular

Pn, if Pn < q2.

Since ¢q2 > q1 and p, > qi1, it follows that e; > ¢; and hence that e, = ¢1. In
conclusion, the system (2) admits a unique equilibrium point e such that

{qm if pn > qo
el =

€n =q1
€n—1=Pn
i1, if > Qn—i
i = In—i+1 : Pn > Gn—i+1 —2...n—1
Pn, if Pn < Gn—it1

Following the same reasoning as the proof of Theorem 4, the equilibrium must
be locally asymptotically stable. Moreover, it must be e € [q1,pn]" = [qx, )™
Figure 4b and Fig. 4c shows the result for a cycle graph of size n = 10 nodes
and edges weight drawn from a uniform distribution. The asymptotic stability
character of the unique equilibrium point is confirmed, see Fig. 4b.
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Figure 3: Example 2. (a): Trajectories (t) of the system (2) from 10 random initial
conditions. Shaded region: pm and gm for each agent. (b): Intervals [pm,qm] for
each agent and equilibrium e (circle).
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Figure 4: Example 3. (a): Cycle Graph. (b): Trajectories z(t) of the system

(2) from 10 random initial conditions. (c): Intervals [pm,qgm] for each agent and

equilibrium e (circle).

8 Conclusion

If a group of agents seeking a consensus has non-dispensable requests on the range
of values that such a consensus can achieve, then standard consensus algorithms
must be replaced by something more sophisticated. The scheme proposed in this
paper, interval consensus, allows to do this efficiently in both continuous and
discrete-time with the only (unavoidable) prerequisite that the intersection of the
agent intervals is nonempty.

To complete the understanding of our saturated dynamics (2) some work
still need to be done for the cases with empty interval intersection. In particu-
lar, the mixed case of an equilibrium which is neither equi-constrained nor equi-
unconstrained (see Example 2) is not treated at all in the paper. The conjecture
which we could not fully prove is that the empty interval intersection case always
leads to a single (asymptotically stable) equilibrium point.
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Abstract

The models of collective decision-making considered in this paper are
nonlinear interconnected cooperative systems with saturating interac-
tions. These systems encode the possible outcomes of a decision process
into different steady states of the dynamics. In particular, they are char-
acterized by two main attractors in the positive and negative orthant,
representing two choices of agreement among the agents, associated to
the Perron-Frobenius eigenvector of the system. In this paper we give
conditions for the appearance of other equilibria of mixed sign. The
conditions are inspired by Perron-Frobenius theory and are related to
the algebraic connectivity of the network. We also show how all these
equilibria must be contained in a solid disk of radius given by the norm
of the equilibrium point which is located in the positive orthant.

1 Introduction

Nonlinear interconnected systems are used in broadly different contexts to de-
scribe the collective dynamical behavior of an ensemble of “agents” interacting
with each other in a non-centralized manner. They are used for instance to rep-
resent collective decision-making by animal groups [3-5], formation of opinion in
social communities [6, 7], dynamics of a gene regulatory network [8], or neural
networks [9]. Such models often share similar features, like the fact of using first
order dynamics at a node and sigmoidal saturation-like functions to describe the
interactions among the nodes [9-12]. The latter functional form is instrumental
to avoid diverging dynamics. The price to pay for having an effectively “bounded”
dynamics is however the appearance of complex dynamical phenomena such as
periodic orbits or multiple equilibrium points, which complicate considerably the
behavior of the system and its understanding. While (stable) periodic orbits can
be ruled out by choosing functional forms which are, beside saturated, also mono-
tone [13, 14], it is in general more difficult to deal with multiple equilibria. These
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are often a necessary feature of a model, like for instance, when describing bista-
bility in a biological system. In the literature on agent-based animal groups for
instance, the collective decision is typically a selection between two different at-
tractors [3-5]. A scenario that occurs often is that of a finite number of attractors,
each with its own basin of attraction, encoding the possible outcomes of the col-
lective decision-making process. This is for instance the model of choice of several
classes of neural networks, like the so-called Hopfield [10] or Cohen-Grossberg [15]
neural networks. When a neural network is interpreted as an associative memory
storage device or is used for pattern recognition, the presence of a high number of
stable equilibria increases the storage capacity of the network. The multistability
of neural networks has in fact been extensively investigated in recent years [16-20],
see also [21] for an overview.

The model adopted in this paper is described in [3, 22, 23]. All interactions are
“activatory”, i.e., the adjacency matrix is nonnegative. In addition, it is symmet-
ric or diagonally symmetrizable and irreducible. The model has a Laplacian-like
structure at the origin and monotone saturating nonlinearities to represent the
interaction terms. The amplitude of the interaction part is modulated by a scalar
parameter, interpretable as the strength of the social commitment of the agents,
and playing the role of bifurcation parameter. When the parameter is small, the
origin is globally stable, as can be easily deduced by (global) diagonal dominance.
The interesting dynamics happens when the parameter passes a bifurcation thresh-
old: the origin becomes unstable, and two locally stable equilibria, one positive,
the other negative, are created. This is the behavior described in [3]. The bifur-
cation analysis of [3], however, captures what happens only in a neighborhood of
the bifurcation point. Moving away from the bifurcation, all is known is that the
positive and negative orthants remain invariant sets for the dynamics, and each
keeps having a single asymptotically stable equilibrium point, see [22, 23]. What
happens in the remaining orthants is unknown and its investigation is the scope
of this paper.

It is useful to look at the neural network literature (in our knowledge the
only field that has studied the multiequilibria problem is a systematic way for
such interconnected systems). It is known since [10] that for neural networks with
connections that are symmetric, monotone increasing and sigmoidal, the equations
of motion always lead to convergence to stable steady states. The number of
such equilibria is shown to grow exponentially with the number n of “neurons”
for various specific models [16-19]. In order to count equilibria, often in these
papers one has to resort to nondecreasing piecewise linear functions to describe
the saturations, and to obtain algebraic conditions on the equilibria by looking
at the corners and at the constant slopes. The existence of the equilibria is also
checked through Brouwer fixed-point arguments. None of these methods apply in
our case.

The consequence is that in order to investigate the presence of multiple equi-
libria in our system we have to take a completely different approach. Since the
adjacency matrix of our network is nonnegative, we can use Perron-Frobenius the-
orem and the geometrical considerations that follow from it. The main result of
the paper is a necessary and sufficient condition for existence of equilibria outside
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R% /R™, formulated in terms of the second largest positive eigenvalue of the ad-
jacency matrix. Roughly speaking, this condition says that the interval of values
of the bifurcation parameter in which no mixed-sign equilibrium can appear is
determined by the algebraic connectivity of the Laplacian of the system [24-26].

While our necessary condition is always valid, our proof of sufficiency is based
on singularity analysis of bifurcations [27], and is valid under the assumption that
the algebraic connectivity has multiplicity one, condition which is generically true
[28]. For consensus problems, the role of the algebraic connectivity is well-known:
the bigger is the gap between 0 (the least eigenvalue of the Laplacian) and the
algebraic connectivity, the more robust the consensus is to model uncertainties,
parameter variations, node or link failures, etc. [25]. In the present context, the
spectral gap in the Laplacian (or, more properly, in the adjacency matrix), rep-
resents the range of values of social commitment of the agents which leads to a
choice between two alternative agreement solutions, with a guaranteed global con-
vergence. Beyond the value represented by the algebraic connectivity, however, the
system bifurcates again, and a number of (stable and unstable) mixed-sign equilib-
ria appears quickly, destroying the global convergence to the agreement manifold
in which the two alternative attractors live. Although we can investigate these
extra equilibria only numerically, it is nevertheless possible to compute exactly
the region in which they must be. The second analytical result of the paper is in
fact that for all values of the bifurcation parameter the mixed-sign equilibria have
to have norm less than the norm of the equilibrium in R’}. In other words, all
the equilibria of the system must be contained in a ball centered in the origin of
R™ and of radius equal to the norm of the positive equilibrium point. Our numer-
ical analysis shows that stable equilibria tend to localize towards the boundary of
this ball, while those near the origin tend to have Jacobians with several positive
eigenvalues and a similar number of positive and negative components.

The rest of this work is organized as follows. Preliminary material is introduced
in Section 2. The main results are stated in Sections 3 and 4; the first section
provides the necessary and sufficient condition for the existence of mixed-sign
equilibria, while the second describes the region in which they must be contained.
Section 5 finally provides a numerical analysis of the equilibria.

2 Preliminaries

2.1 Concave and convex functions

Let U € R™ be a convex set. A function f:U — R is convex if for all x1,29 € U
and 0 with 0 <60 <1, we have

f(0z1+ (1= 0)z2) <Of(x1)+ (1—0)f(z2). (1)

It is strictly convez if strictly inequality holds in (1) whenever z1 = 29 and 0 < 6 < 1.
We say f is concave if —f is convex, and strictly concave if — f is strictly convex.
Suppose f:U — R is differentiable. Then f is convex if and only if

Flon) = @) + 9L (w2) 1 — ) )
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for all z1,29 € U. Tt is strictly convex if and only if strict inequality holds in (2)
for all 1 #x9 and x1,20 € U.

2.2 Nonnegative matrices and Perron-Frobenius

The set of all A € C that are eigenvalues of A € R™*" is called the spectrum of A
and is denoted by A(A). The spectral radius of A is the nonnegative real number
p(A) =max{|A|: A€ A(4A)}. A matrix B € R™*"™ is said to be similar to a matrix
A e R"™ " abbreviated B ~ A, if there exists a nonsingular matrix S € R™*" such
that B = S™1AS. If A and B are similar, then they have the same eigenvalues,
counting multiplicity. A matrix A € R™*" is said to be reducible if either n =1
and A =0 or if n > 2, there is a permutation matrix P € R™*"™ and some integer
r with 1 <7 <n—1 such that PTAP = {g g} where B € R™*", ¢ e R™* ("),
D e R=)x(n=7) ~ A matrix A € R™*" is said to be irreducible if it is not reducible.
The matrix A = [a;;] € R"*" is said to be diagonally dominant if |az;| >, |asj|
for all 4. It is said to be strictly diagonally dominant if |az| > 3., |a;;| for all .
Theorem 1 (6.1.10 in [29]). Let A € R™*"™ be strictly diagonally dominant.
Then A is nonsingular. If a;; > 0 for all i = 1,...,n, then every eigenvalue of A
has positive real part. If A is symmetric and a;; > 0 for all i = 1,...,n, then A is
positive definite.

Theorem 2 (Perron-Frobenius, 1.4 in [30]). If A € R™ " is irreducible and
nonnegative then p(A) is a real, positive, algebraically simple eigenvalue of A,
of right (resp., left) eigenvector v > 0 (resp., w > 0). Furthermore, for every
eigenvalue \ € A(A) such that \ = p(A) it is |\| < p(A) and the corresponding
eigenvector vy cannot be nonnegative.

Corollary 1 (Perron-Frobenius). If A€ R™ " js irreducible and nonnegative
then either

n
p(A)=> ay, Vi=1,..n (3)
j=1

or

i {Soos} <o <o (3. o

2.3 Symmetric, symmetrizable and congruent matrices

Let A € R™" be symmetric. Then all the eigenvalues of A are real and ST AS is
symmetric for all S € R™*™. A matrix A € R"*" is (diagonally) symmetrizable if
DA is symmetric for some diagonal matrix D with positive diagonal entries. The
matrix DA is called symmetrization of A and the matrix D is called symmetrizer
of A [11, 31].The eigenvalues of a symmetrizable matrix are real. A € R™*™ ig
symmetrizable if and only if it is sign symmetric, i.e., a;; = aj; = 0 or a;ja;j; > 0,
Viz# j, and Qj1i9Aigig = Aipip = Qigiq Qigig * " Ajyiy for all ii,. .. ,ik. A matrix B €
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R™ ™ is gaid to be congruent to the matrix A € R™*" if there exists a nonsingular
matrix S such that B = SAST.

Theorem 3 (Ostrowski, 4.5.9 in [29]). Let A,S € R™" with A symmetric
and S nonsingular. Let the eigenvalues of A, SAST and SST be arranged in

nondecreasing order. For each k=1,...,n, there exists a positive real number 0},
such that /\1(SST) <6, < )\n(SST) and A\, (SAST) = O \,(A).

2.4 Cooperative systems

Consider the system
&= f(z), x(0)=xo ()

where f is a continuously differentiable function defined on a convex, open set
U CR™. We write x(t,x0) for the forward solution of (5) with initial condition
xo ER™at t =0. Let S =diag{si,...,sn} € R™*™ where s; = £1 for all i. The set
SR”™ given by SR" = {x € R": s;2; > 0, s; € {£1},i=1,...,n} is an orthant in
R™. SR" is a cone in R™ and it generates a partial ordering “<grn”, i.e., z <ggrn y
iff y —x € SR™. The subscript “SR"” will be dropped in case SR™ = R", the
nonnegative orthant.

The system (5) is said to be type-SR™ monotone [14] if whenever Z and g lie
in Y and if £ <ggn y then z(t,z) <grn x(t,y) for all t > 0 for which both solutions
are defined. In this case we say that the flow of (5) preserves the ordering <ggn.

Lemma 1 ([14]). If f € C*(U) where U is open and convex in R™, then z(t,x)
preserves the partial ordering <ggrn for t > 0 if and only if S %(m)S has nonnega-
tive off-diagonal elements for every x € U, where S = diag{s1,...,sn}, si € {£1},
is the “signature” of the orthant SR™.

If SR™ =R’} then we have the class of cooperative systems. System (5) is said
to be cooperative in U C R™ if the differentiable vector field f: R™ — R"™ is such

that the Jacobian matrix %(m) is Metzler for all x € U, that is, [%(x)} . >0 for

all ¢ = 7.

3 Multiple equilibria in collective decision-making
systems

The class of nonlinear systems considered in this work is the following [3, 22]
T =—Ax+mAyY(x) (6)

where x € R™, m > 0 is a scalar parameter, A = [a;;] is the weighted adjacency
matrix of the network, A = diag{d1,...,d,}, and ¥(z) = [¢1(21) --- ¥n(xn)]”. The
matrix A is assumed to be nonnegative with null diagonal, irreducible and sym-
metrizable. A Laplacian-like assumption links A and A: §; = Zj a;;. In the
context of agent-based group decisions, §; represents the inertia of the i-th agent
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to the development of an opinion, v;(x;) the capacity of the i-th agent of transmit-
ting its opinion to the other agents, mediated by the pairwise susceptibilities a;;.
From the irreducibility assumption on A it follows that each §; is strictly positive,
0; > 0. Denote Opmin = min;{J; } and dmax = max;{d;}. The parameter 7 represents
a community social effort. See [3, 5] for more details.

The vector of functions v(z) is such that each v;(z;) : R — R satisfies the
following conditions

1/11(.’[71) = —@/Ji(—xi), Va; € R (Odd) (Al)
?’Z (2;) > 0, Vz; € Rand gqf (0)=1 (monotone) (A.2)
lim ;(z;) =+1 (saturated). (A.3)

z;—to0

The assumption (A.3) guarantees the boundedness of the solutions, and together
with (A.2) allows to exclude the presence of limit cycles. Typical choices for v; are
a (modified) Michaelis-Menten function ¢;(z;) = %, z; € R [7], or a (modified)
};27:;2, x; € R [9] (that is, the hyperbolic tangent

function). The versions here proposed satisfy the conditions (A.1)+(A.3).
Additionally, if each nonlinear function ;(x;) satisfies the following condition

Boltzmann function v;(z;) =

(sigmoidal) (A4)

i) strictly convex Vx; <0
! strictly concave Vax; >0

then, from (2) and (A.4), |[¢i(z;)| < |x;| for all ¢ and z; = 0. While all the examples
mentioned above (Michaelis-Menten and Boltzmann functions) satisfy also (A.4),
nonsigmoidal functions often satisfy (A.1)+(A.3) but not (A.4). From these as-
sumptions, it follows that the Jacobian matrix of (6), given by —A+7rAg—f(x), is
Metzler. Therefore, the system (6) is cooperative.

It is convenient to rewrite the system (6) in the following (“normalized”) form

i=A(—z+mH(z)), zeR™ (7)
where the matrix H is defined as H := A1 A. Denote also H, := m#H. Observe
that it satisfies some useful properties:

e H, is nonnegative and irreducible, so Theorem 2 applies.

o All the row sums of H, are equal to «, that is, H;1, = «1,. It follows that
(m,1,) is the Perron-Frobenius eigenpair of H.

e As the matrix A is symmetrizable, also H; is symmetrizable, hence it has
real eigenvalues.

We will see below that the existence (and the stability) of multiple equilibria is
strictly related to the structure of the spectrum of the matrix H.

3.1 Existence of multiple equilibria: a necessary condition

Consider the system (7) (or (6)) where each nonlinear function 1;(-) satisfies the
properties (A.1)=(A.4). Let us start by recalling what is known for this system
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when we vary the parameter m. By construction, the origin is always an equilibrium
point for (7) (or (6)). When 7 < 1, z = 0 is the only equilibrium point, it is globally
asymptotically stable and locally exponentially stable. This follows from diagonal
dominance, and can be easily shown by a Lyapunov argument, see [3, 22, 23]. At
m = = 1, the system undergoes a pitchfork bifurcation, the origin becomes a
saddle point and two more equilibria emerge, 1 € R? and z~ € R” [3]. It follows
from the analysis of [22] that, for all 7 > 1, = 0 is an unstable equilibrium point,
while both T and x~ are locally asymptotically stable with domain of attraction
given by (at least) the entire orthant for any 7 > 1. R’} (respectively R") are
in fact invariant for the system (7). What happens outside these two orthants
is, however, unknown. When 7 > 1 and 7 — 1 is sufficiently small, the behavior
of the system (7) outside R’} and R” has been discussed in [3]. Only the three
equilibrium points mentioned above are possible, two locally stable [22] and the
origin as a saddle point. However, when 7 > 1 grows, the bifurcation analysis of
[3] does not suffice anymore.

Our task is, therefore, to investigate the behavior of the system (7) when 7 > 1
grows and z € R™ (case not described by [22] and [3]). In particular, we would
like to understand for what interval (1, m2) of the bifurcation parameter 7 extra
equilibria not contained in R’} /R™ cannot appear, and what happens for 7 > 7.

The following theorem introduces a necessary condition that has to be verified
in order to have an equilibrium point Z in a generic orthant SR™ = R’} /R™ for the
system (7).

Theorem 4. Consider the system (7) where each nonlinear function 1;(-) satisfies
the properties (A.1)+(A.4). If the system admits an equilibrium point & € SR",
where SR™ is an orthant in R™ and SR™ = R"} ,R”, then I\(H,) € A(Hy) such
that A\(Hz) > 1 and M\(Hy) = p(Hz).

Proof. Let z € SR™ be an equilibrium point for (7). Because A is diagonal and
positive definite, from (7) it follows

First notice that if £ € SR™ also ¥ (%) € SR", because from (A.1) and (A.2)
¥i(x;) keeps the same sign of x; for all ¢ =1,...,n. Introduce the diagonal matrix
M (z) = diag{m1(Z1),...,mn(Zn)}, where each element is given by

mi(ii)zw, izl,...,n.
Zq
Since T >grn 0, the ratio is well-posed. The dependence of M (Z) from z will be
omitted from now on. From (A.2) and (A.4) one gets | (x;)| < |zi| Vi, z; # 0,

which leads to m; = %‘fl) € (0,1) for all i. Then 0 < diag{M} < 1,,. Applying
the change of coordinates z = M%i:, from ¢(z) = Mz, we get
1 1
z=M2H,M?2Z. (9)
Eq. (9) represents the eigenvalue equation for the matrix M%HFM%, that is, (1,2)

1 1 _ . R _
is an eigenpair of M2 H; M 2. Furthermore, z € SR since, for each i, z; = \/m; T;
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and m; is strictly positive. Observe that M %HWM 3 is nonnegative and irreducible
and let its eigenvalues be arranged in a nondecreasing order. Theorem 2 states
that )\n(M%HWM%) = p(M%HﬂM%) is real and positive and that its associated
eigenvector is real and in the positive orthant of R™. Then p(M%HWM%) >1
since the eigenvector associated to 1 is z € SR™ = R’} ,R™. To prove that 3 \(H) €
A(Hy) such that A(H;) > 1, we proceed in steps.

Step 1. Since the matrix A is symmetrizable, let A = D 4S54 where D, is a diag-
onal matrix with positive diagonal entries and S4 is a symmetric matrix. Notice
that the matrix S4 is still irreducible, nonnegative and with null diagonal.

Step 2. The matrix Hy, which can be written as Hy = tA~1D 45, is symmetriz-
able. Define the matrix Dy := 7A~1D 4, diagonal with positive diagonal entries.
Then, Sy = DI:IlHW is the symmetrization of H, while Dﬁl is the symmetrizer of
H;.

Step 3. Consider the matrix H, defined as

- _1 1 1 1
Hy:=D,?H,D} = D%SADZ.

By construction it is symmetric, nonnegative, irreducible, and similar to Hr. Be-
cause Hr and Hr have the same eigenvalues, it is just necessary to prove that
IN(H,) € A(Hy) such that ANH ) >1 and NH ) p(Hy).

Step 4. The matrices MZHWMZ and M2 HTFM2 are similar. Indeed
1 1 LI U B 1~ 1
M2H M2 =DZ(M2HM2)D,? ~M2HM?2.
Then, they have the same eigenvalues and, in partlcular from equation (9) it
1
follows that (1, D, ’) is an eigenpair of the matrix M2H M?. Since D%z €
SR™, it follows that 3 k # n such that )\k(M2 HWM2) =1

1 ~ 1 1
Step 5. The matrix M2 H,;M?2 is symmetric and M?2 is nonsingular so it is
possible to apply Theorem 3. There exists a positive real number 6 such that

1 ~ 1 ~
Ak(M2HrM?2) = 60p N (Hr)
and 1 1 1 1
M (M2 (M2)T) <0 < An(MZ(M32)T)
where A1(M) = min;{m;} and A\,(M) = max;{m;}. Then 0; < max;{m;} < 1.
Since k # n is the index for which )\k(M%f{ﬂM%) =1, it follows

1=\ (M2 He M3) = 0\ (Hr) < N (Hr).

Because k # n, this implies the existence of an eigenvalue M Hy) € A(H,) such
that \(H,) > 1 and A\(H,) # p(Hy,). Consequently, since H, and H, are similar,
there exists A(Hy) € A(Hy) such that A(Hr) > 1 and AN(Hy) # p(Hy). O
When instead of (7) the system (6) is considered, then the results are less sharp,
since they depend on the diagonal terms, which are not all identical as in (7).
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Corollary 2. Consider the system (6), where each nonlinear function ;(-) sat-
isfies the properties (A.1)=(A.4). If the system admits an equilibrium point
r € SR", where SR™ is an orthant in R™ and SR™ # R}, R”, then I\(A) € A(A)
such that A(A) >0 and A\(A) = p(A) for which w A(A) > dmin.

Proof. Let the symmetrizable matrix A be written as A = DS 4, where D is
a diagonal matrix with positive diagonal entries and S, is a symmetric matrix.
Then Hy =7A~1DSy. Define a new matrix

[NIE

H,:=AID 3H,DIA % = A3 AN~

where A is defined as A := D 3AD3 = D%SAD%. By construction, Hy is sym-
metric, similar to Hy and congruent to A, while A is symmetric, similar to A
and congruent to S4. Because Hy and A are both symmetric, it is possible to
apply Theorem 3. To simplify the notation, let S := ﬁAfé and H, = SAST,
and the eigenvalues be arranged in a nondecreasing order. Therefore, there exists
a positive real number 6, such that the following conditions hold

A (Hr) = 02 (A) (10)
M (SST) <o, < /\n(S’ST) (11)
From Theorem 4, 3 k = n such that Ap(Hz) > 1. Tt follows, by similarity, that

Ap(Hz) > 1. Then, the condition (10) where Hk >0 and k = n yields Ap(A) >0
and A, (A) = p(A). Moreover, since SST = 7A~!, then

~ T ~ T

M (SST) = . (88T =

5max 6min

From (10), (11), and the result of Theorem 4, it follows that

1< )\k(;l),

min

that is, 7r/\k(/~1) > Omin. But A and A are similar, that is, they have the same

eigenvalues. Then mA;(A) > dmin, which concludes the proof. O
It is possible to relax the assumption (A.4). For each i = 1,...,n, define the
coefficients p; := max{ vilzi) } (with % =1); then, let
JER €Ty K x;=0
po= max {yu;}. (12)

This means that the condition |v;(x;)| < w|z;| holds for each i and z; € R.
Theorem 5. Consider the system (7) where each nonlinear function v;(-) satisfies
the properties (A.1)+(A.3). If the system (7) admits an equilibrium point T > ggn
0, where SR™ is an orthant in R™ and SR™ # R} ,R", then I\(Hy) € A(Hy) such
that A\(Hz) > 1/p and MN(Hy) # p(Hy), where p is given by (12).

The proofs of this theorem and of the following corollary are omitted as they
are completely analogous to those of Theorem 4 and Corollary 2.
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Corollary 3. Consider the system (6) where each nonlinear function ;(-) sat-
isfies the properties (A.1)+(A.3). If the system (6) admits an equilibrium point
r € SR", where SR™ is an orthant in R™ and SR™ = R’} , R”, then I\(A) € A(A)
such that A(A) >0 and A\(A) = p(A), for which w A(A) > 6‘“%, where p is given by
(12).

Remark 1. Observe that if Z € R" is any equilibrium point for the system (7) (or (6)),

also —Z is an equilibrium point as well. Indeed, as by assumption (A.1) ¥(—z) = —¢(Z),
it follows that Hx¢(—Z) = —Hx9p(Z) = —Z.

Remark 2. The necessary conditions given by Theorem 4 and Theorem 5 imply that in
order to have an equilibrium point z € SR” for the system (7), where SR is an orthant
in R"™ and SR™ = R’} ,R™ , the number of nodes in the network should be strictly greater
than three. The next proposition, in fact, shows that it is impossible for A (and hence
for Hr) to have a second positive eigenvalue which differs from the Perron-Frobenius
eigenvalue if n < 3, and is of independent interest.

Proposition 1. Let n <3 and A € R™*™ be an irreducible, symmetrizable, non-
negative matrix with null diagonal. Then, A cannot have two different real positive
eigenvalues.

Proof. The matrix A is symmetrizable, which implies that its eigenvalues are real.
Let them be arranged in a nondecreasing order, that is, A\p,(A4) > Ap—1(4) >--- >
A1(A4). For all n, it is always true that

n

D Ai(A) =Tr(4) =0, IIA = det(A).

i=1
Since A is nonnegative and irreducible, it is possible to apply Theorem 2 from
which it follows that A,(A) = p(A4) > 0. Then

0 a2

-Ifn=2,A=[a21 0

} and the conditions on its trace and determinant

become
A1(A) +A2(A4) =0
)\1(A))\2(A) = —aj2a91 <0
which yields A1(A) < 0.

0 a2 a3
e Ifn=3,A= |a21 0 ao3| and the conditions on its trace and determinant
azr azz 0

{()+&Mﬂﬁd) 0
A1 (A)A2(A)A3(A) = a12a23a31 + a13a21a32 > 0
which yields A\1(A4) = —=A3(A) <0 and A2(A) =0 or A\ (A), A2(A4) <O0.

become

3.2 A geometric necessary and sufficient condition

The following lemma provides a geometric interpretation of the condition of The-
orem 4. Consider the Laplacian £ = I — H. Since p(H) = 1, by construction,
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the least eigenvalue \i(L£) =1 — p(H) is the origin. Recall that the second left-
most eigenvalue of £, Aa(L), is called the algebraic connectivity of £ [26]. If
An—1(H) is the second largest eigenvalue of H, then the algebraic connectivity of
L is )\2(,6) =1- )\n_l(H).

Lemma 2. The range of values of w for which no extra equilibrium of the system
(7) (other than 0, z™ and ™) can appear is given by (1, 72), with mo = %1(11) >
1, and, hence, it is determined by the algebraic connectivity Aa(L).

Proof. For (3), it holds that }_; hij = p(H) = 1V i. This means that the Laplacian
L has all identical Gersgorin disks, all centered at 1 and passing through the origin:

s€Cst. |s—1| < a—élzl .

=1

From the Gersgorin’s Theorem [29], the eigenvalues of L are located in the union
of the n disks. The least eigenvalue A;(L£) = 0 lies on the boundary of the
Gersgorin’s disks. The other eigenvalues of L are strictly inside the disks be-
cause of irreducibility and positive semidefiniteness of £. When 7 > 1, all the
eigenvalues of H;y = mH are increased in modulus, and the Gersgorin disks of
I — H, are still all centered in 1 but have radius w. The condition of Theorem 4,
IN(Hy) > 1, M(Hy) # p(Hy) corresponds to the existence of m s.t. wA(H) > 1 for
A(H) >0 and A(H) = 1, that is, it corresponds to requiring that 7 > w2, where

Ty = A%l(H) > 1. When this happens, 1 — 7 \,_1(H) crosses into the left half of
the complex plane. O

The insight given by Lemma 2 allows to show that the condition of Theorem 4
is also sufficient. Since we use bifurcation theory and singularity analysis in the
proof, we have however to restrict to the case of algebraic connectivity A2(£) which
is a simple eigenvalue (property which is generic for weighted graphs, see [28]).

Theorem 6. Consider the system (7) where each nonlinear function 1;(-) satisfies
the properties (A.1)+(A.4). Assume further that the second largest eigenvalue of
H, \p—1(H) is simple. The system admits an equilibrium point € SR™, where

SR™ is an orthant in R"™ and SR™ = R’} ,R"  if and only if m > 79 = /\%1(11) > 1.

Proof. Necessity was proven in Theorem 4. In fact, as shown in Lemma 2, since

p(H) =1, the condition of Theorem 4 corresponds to m > my = /\%1(1{) >1. To

show that mixed sign equilibria appear exactly at m = mp = )\%1(}1), we use bifur-
cation theory, in particular singularity theory and Lyapunov-Schmidt reduction
for pitchfork bifurcations [27], see also [3]. Consider

D(x,7) =—z+7H(x) =0. (13)

Denote v9 and wo, wgvg =1, the right and left Fiedler vectors, i.e., the eigenvectors
relative to Ap,—1(H). From Theorem 2, vo,wz € SR™ for some SR"™ =R’} ,R™. Let
J= ‘?9%(0, m9) = —I +moH. Observe that range(J) = (ker(J7))+ = (span{ws})*
and that ker(J) = span{va}. Let E denote the projection of R™ onto range(J) =
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(span{ws})*, E = I —vowl, and I — E the projection onto ker(J) = span{va}.
Split = accordingly: « = yvs +7, where y € R and r = Ex € (span{wsg})*.
Near (0, m2), (13) can be split into

E®(z,n)=FE(—z+nHy(z))=0 (14a)
(I—-E)P(z,m1)={I—-E)(—z+7nHy(z))=0 (14b)

Since \,—1(H) is simple, at m = 72 (13) has a simple singularity. Hence, for (14a)
the implicit function theorem applies and it is possible to express r = R(yva, 7).
The explicit expression of R(-) is not needed in what follows. Replacing r in (14b)
we get the center manifold

)

oy, m) = (I = E)(—yva — R(yva, ) + mH1p(yva + R(yva, 7)) = 0. (15)

Define g(y,7) = wl ¢(y, ), where wy € (range(J))*. The recognition problem for
a pitchfork bifurcation requires computing at (0, m2) the partial derivatives gy, gyy,
Gyyys 9r, 9ry- In this case, the calculation is simplified by the fact that ®(x, )
is odd in z. For instance, since @ has a singularity at (0, m2), it follows that the
directional derivative along v2 vanishes:

q)y(07 772): 87(937 7T) Vg = <—I+7TH8¢($>> V9
6x (077T2) 8:1: (0,7T2)
= (=T +mH)va = —va+mAp_1(H)va =0
where we have used %ﬁl) = 1. Similarly (see [27])
o [ 0D 0 [ ov(x)
(0, m2) = —(z,m) vy |vo =7mH — ( 112) v =0
o 0w \ Ox (0,72) dr \ Oz (0,72)
because % =0, and
0
oD
Op(0,72) = L(a,m)| = HG(@) gy =0
aﬂ' (0771_2) (07 2)

since ¢;(0) = 0. The two remaining partial derivatives are

o (oo 4 @)
(DTr 0) = a_ o ’
y(0, m2) ( (z,7) (Om)vz> 2

or \ Oz
and (using a notation similar to [27, (3.16)])

= H’U2 = )\n_l(H)’UQ

(0,72)

b1 v3
9 2,1

Dy (0, m2) = W(%W) (v2, v2,v2) = mo H

(077T2) . ﬂn
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where, from (A.4), 5; = % < 0. Consequently, for the projections along
g 0
v2: ¢y(0,m2) = (I — E)Dy(0, m2) = 0, and, similarly, ¢y, (0, m2) =0, ¢~(0, m2) = 0.
As for the two nonvanishing partial derivatives: ¢y (0, m2) = (I — E)®ry (0, m2) =
An—1(H)va and ¢yyy (0, m2) = (I — E)Dyyy (0, m2) = v2 > 1" 4 ﬁiwzﬂ}g’i. Therefore
9y(0, m2) = gyy (0, T2) = g (0, m2) = 0 and gry(0, m2) = Ap—1(H) > 0, gyyy (0, 72) =
Yoy ﬂiwgﬂ-vg’i < 0 since w27iv§7i > 0 Vi, which completes the recognition problem
for a pitchfork bifurcation [27]. Hence, at m = m the system crosses a second bi-
furcation through the origin and two new equilibria appear along span{va}. Since
vg € SR", these equilibria must belong to SR™ and —SR". O

Notice that unlike most arguments based on singularity analysis of bifurcations,
our result in Theorem 6 is not a local one, as our proof of necessity (Theorem 4)
is nonlocal.

When A,—1(H) has multiplicity higher than one, then singularity analysis
based on the normal form of a pitchfork bifurcation does not apply, although
we expect that similar sufficiency results can be obtained through more advanced
bifurcation theory.

A pictorial view of the situation described in Theorem 6 will be given below in
Example 1, see in particular Fig. 1, Fig. 2a and Fig. 2b.

If instead we look at system (6), and at the Laplacian L = A — A, then, when
m =1, the Gersgorin disks are centered at J; and have different radii equal to 9;.
However, this cannot be straightforwardly reformulated in terms of p(A), as (4)
(instead of (3)) now holds: dmin < p(A) < dmax. When exploring the values 7 > 1,
then the Gersgorin disks of Ly = A — A are contained one in the other, according
to the corresponding ¢;, and all have nonempty intersection with the left half of C,
see Fig. 2c and Fig. 2d. In this case, while the eigenvalue condition introduced in
Theorem 4 represents the necessary and sufficient condition for the negativity of
a second leftmost eigenvalue of L, the eigenvalue condition introduced in Corol-
lary 2 is just necessary, due to the presence of the diagonal matrix A. Using a
similar reasoning it is in fact possible to prove that A,_1(H) = m0\,—1(A), where
the value of the positive constant € is not fixed but dpin < 0 < dmax.

3.3 Stability properties of multiple equilibria

Theorem 7. Suppose the system (7) admits an equilibrium point & € SR™, where
SR™ is an orthant in R"™ and SR"™ =R’} , R™. If

Y
—(z; 1 16
wm?x{axj(x])}< , (16)
then x is locally asymptotically stable. Instead, if
s
Wrrljill{a;/};(xj)} >1, (17)

then the equilibrium point T is unstable.
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Proof. Let z € SR™ be an equilibrium point for (7). To study the behavior of
the dynamical system (7) near the equilibrium point z, consider the linearization
around T

oY

izA( I+ Hy 5

(@) (@), (18)

Under the condition (16), it can be proven that the matrix I — H, 2 5 ( ) is strictly

diagonally dominant, that is, 1 > " i 0v; L(z;) for all i =1,...,n. Indeed

j¢z[

wlij Oz
OV i iz o 2
Siicls e < mae{ S3,) | St = m?X{ax] @)} <1.

Then, it is possible to apply Theorem 1 and state that, under the condition (16),
each eigenvalue of the matrix I—H gw (Z) has strictly positive real part. Therefore,
each eigenvalue of the matrix A(—I + H, 1/1( )) has strictly negative real part,
that is, = is locally asymptotically stable.

Now, suppose that (17) holds and consider the linearization around z (18).
Let Hy := H, 8111 () and notice that it is nonnegative and irreducible (therefore
it is possible to apply Theorem 2). If the matrix H; — I admits an eigenvalue
with positive real part, it is possible to conclude that the equilibrium point Z is
unstable. For each i =1,...,n, it holds that

ZH :Z 7”]‘21/’] ;) > min { }Z —mm{gw(mj)}ﬁ>l,
I] 7 I]

J=1 Jj=1 Jj=1

under the hypothesis (17). According to Corollary 1, p(H,) > mln{Z[Hﬂ]ij}.

From the previous reasoning, it follows that p(Hy) > 1. Therefore, the matrix
H,; — I admits a real positive eigenvalue given by p(H;) — 1, which implies that
the equilibrium point Z is unstable. O

4 Location of the mixed-sign equilibria

In this section we restrict our analysis to the special case of all identical 1;(x;). In
this case, the equilibrium point in the positive orthant has all identical components
as shown in the following lemma.

Lemma 3. Consider the system (7) where each ;(-) satisfies the properties
(A.1)+=(A.4) and ¥;(§) = ¢;(§) Vi,j and V§ € R. When 7 > 1, the positive equi-

"/’Z(I ) 1

librium point T € R is such that = . Furthermore a7t is the Perron-

7,

Frobenius (right) eigenvector of Hy.

Proof. For the matrix H,; we have that the Perron-Frobenius eigenvalue is
p(Hz) = m > 1 and the corresponding eigenvector is 1,. At x™, it must be
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Hep(zt) = 2. If (a) = L2t with 2 = al,, for some a € (0,7), then we
have Hptp(zT) = %aHW]ln = al, from which we get the eigenvalue/eigenvector
equation H,1, = ml,. It follows that z* = al,, is the Perron-Frobenius eigenvec-
tor of H;. The specific value of « depends on the functional form of ¢;(z;). O

A more important consequence is that for each value of 7 the positive equilib-
rium point 1 provides an upper bound on the norm that any mixed-sign equilib-
rium z can assume.

Theorem 8. Consider the system (7), where each nonlinear function ¥;(-) sat-
isfies the properties (A.1)+(A.4) and ;(§) = v¥;(§) Vi,j and V¢ € R. If the
system admits an equilibrium point z € SR™, where SR" is an orthant in R™ and
SR"™ =R, R™, then ||z||2 < |lz7]|2.

In order to prove the theorem we use the following lemma.

Lemma 4. Consider the system (7), where each nonlinear function v;(-) satisfies
the properties (A.1)+(A.4) and ¥;(§) = ¢j(§) Vi,j and V& € R. If the system
admits an equilibrium point & € SR™, where SR" is an orthant in R" and SR" #
R, R, then YU > L for all i,

Proof. Introduce the diagonal matrix M (z) = diag{m1(Z1),...,mn(Zn)} as in
Theorem 4, where each element is given by m;(Z;) = wli,%, i=1,...,n. Since
Z >grn 0, the ratio is well-posed. The dependence of M (z) from z will be omitted
from now on. Let mmin = m'in{%} for all 4 and [ € {1,...,n} be the index
7 1

such that %f’) = Mmpin and suppose without loss of generality that z; > 0. By
definition of mpyin and from (A.2) and (A.4), ¥;(Z;) < (%) and Z; < Z; for all ¢ = 1.
At z, it must be £ = H¢ (%), that is, z; = Zjii[Hﬁ]ijwj(ijj) foralli=1,...,n.
This yields

2= [Halijj (@) < O [Heliy)u(Z1) = oy (21)

Jj#l j#l
which implies that mmin = szgz) > % Then, since m; > mmin for all ¢ = [, it
follows that %‘?') > % foralli=1,...,n. O
Proof. [Theorem 8] Let 2 € R’ and z € SR™ be equilibrium points for the
- (ot
system (7). From Lemma 3 and Lemma 4 it follows that % > % = %

for all 4 =1,...,n. This implies that |z;| < z;" for each i, which yields |z| < .
Therefore, ||Z||2 < ||z7]|2. O

5 Numerical Analysis

In this section we first look at the trajectories of a specific numerical example of
size n = 6. Then we perform a computational analysis of the properties of the
equilibria for a system of size n = 20.
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—— Example 1

Consider a network of n =6 nodes of weighted adjacency matrix

0 01477 0 0.1698 0 0.0135
04242 0 0.2626 0.3621 0O 0

0 01889 0 0 0.2502 0.4158
0.4036 0.2997 O 0 0 0

0 0 02427 O 0 0.2513
0.0301 0 04474 0 02787 O

A:

which is irreducible, nonnegative, and symmetrizable. Consider the system (6)
(and (7)) and assume that each nonlinear function ;(-) is given by the hyper-
bolic tangent 1;(z;) = tanh(z;), which satisfies the assumptions (A.1)+(A.4). The
Perron-Frobenius eigenvalue of the matrix A is p(A) = 0.706 and its second largest
positive eigenvalue is \,_1(A4) = 0.515, meaning A\,_1(H) = 0.822 or m = 1.216.
Hence we have:

o for m <1, £ =0 is the only equilibrium point;

o for m € (1,1.216), the only equilibria are {0, %, z~}, with 2™ = +al, see
red branch in Fig. 1a;

o for m > 1.216, unstable equilibria Zo € SR"™ = diag{—1, —1,1, 1,1, 1} and
—x92 € —SR" bifurcate from 0, see blue branch in Fig. 1a.

When 7 grows further, new bifurcation points soon appear. Fig. 1b shows that
these bifurcations are not associated to singularities in the origin, but rather
they branch out of £x3. For instance, choosing m = 1.838, also the condition
TAn—1(A) > Omin is satisfied. Numerical computations confirm the existence of
at least 3 equilibria in SR”, denoted Z3, T4, 5, which shows that more than
one equilibrium can exist per orthant. The condition presented in Theorem 7
is satisfied for z3, and this assures its local asymptotic stability. Instead, x4
and s are unstable. This is shown in the simulation of Fig. 1c. Following the
reasoning introduced in Section 3.2, it is possible to observe that at m = 1.838
the second leftmost eigenvalue of the matrix Ly = A — 1A, \a(Lr) = —0.302, is
negative. However, notice that even if the necessary condition presented in Corol-
lary 2 is satisfied, the condition mAp,_1(A) > dmax does not hold. Fig. 2 shows
the Gersgorin’s disks and the eigenvalues of different matrices, respectively I — H
(when 7 =1), I —7H (when # > 1), L=A—A (when 7 =1), Ly = A—-7A
(when 7 > 1). Notice that while it is possible to determine the exact value of
X(I—mH)=1—m\—1(H), it is only possible to give a bound for the second
leftmost eigenvalue of Ly, i.e., dmax|[l — An—1(Hz)] < A2(Lz) < 0min[l — Ap—1(Hz)]
or Omin — TAn—1(A) < Aa(Lr) < dmax — TAn—1(A). Finally, observe that this eigen-
value has to be in the union of all the Gersgorin’s disks of L, but it is not possible
to define a priori the smallest disk that contains Aa(Lx).
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Figure 1: Example 1. (a): Bifurcation diagram near x = 0 for two components z;
and x;. When 7 = 1, then the origin bifurcates a first time, and the two locally
stable equilibria at (red branches) are created along the consensus manifold (red
plane). When m = 79 = Py esoti second bifurcation occurs in the origin, with

two equilibria (blue branches) locally branching out along span{vy} (blue plane).
(b): The corresponding set of eigenvalues of —I +wH (linearization in the origin)
as a function of m. The two crossings at # =1 and 7 = 79 are highlighted. (c¢): 100
random initial conditions converging to T (blue), 2~ (red), Z3 (purple) and —Z3
(green).

2 2 2 2

1 1 1 1

0 b 0 0 .@ 0

-1 -1 -1 *"/ -1
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1 0 1 2 3 -1 0 1 2 3 -1 0 1 2 3 a1 0 1 2 3
(a (b (c) (d)

Figure 2: Example 1. Gersgorin’s disks and eigenvalues of (a): I — H (when 7 =1).
(b): I —7H (when m > m3). (¢): L=A—A (when 7 =1). (d): Lr =A—7A (when
m > mg). The eigenvalues are indicated by cross symbols.

—— Example 2 .

A network of n = 20 already has > 10 orthants, all potentially containing
equilibria of the system (7). Since, as shown in Example 1, multiple equilibria can
appear in the same orthant, this size is already by far out of reach of exhaustive
analysis. The results shown in Fig. 3 are for a single (nonnegative, irreducible,
symmetrizable) realization A, with edges chosen as in an Erdds-Rényi graph (edge
probability p = 0.1) and weights drawn from a uniform distribution. All ¢;(x;) are
chosen equal (again hyperbolic tangent). The results appear to be robust across
different realizations of A. Figure 3a shows the number of equilibria (and, in
red, the number of orthants to which these equilibria belong) for 500 choices of 7
uniformly distributed between 1 and 20. For 7 very small no equilibrium appears,
as expected. Equilibria start to appear for values of 7 that satisfy the condition
of Theorem 6. When 7 is increased further, then the number of equilibria rapidly
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grows. For each value of 7, 10* different initial conditions were tested (we used
the fsolve function of Matlab to compute equilibria). The number of equilibria
found in this way oscillated between 500 and 600 for a broad range of 7 values,
belonging to 400-500 different orthants. As shown in Theorem &, for each 7 all

of the equilibria have a norm which is less than the norml‘oﬂ the corresponding

|2
(B
equilibria were tested for local stability. As shown in Fig. 3c, most but not all of
them are unstable, with up to 7 unstable eigenvalues in the Jacobian linearization.
It is also remarkable that all stable equilibria tend to have high norm ||Z||o, i.e.,
they tend to be near the boundary of the ball of radius ||#]||2 to which they have
to belong, see Fig. 3c. Notice from Fig. 3b and Fig. 3c that equilibria of small

norm ratio |||ﬁ||72’ corresponding to small values of 7, tend also to have an equal

positive/negative equilibrium, see Fig. 3b, where the ratio is shown. These

ratio of positive and negative components: in Fig. 3c the radial directions are
determined by the fraction of 4+ and — signs of an equilibrium, and the bisectrix
of the second and fourth quadrant, corresponding to 50% of + and 50% of —, is
where these equilibria tend to be localized.

6 Final considerations and conclusions

In this work we have investigated the presence of fixed points for a particular
class of nonlinear interconnected cooperative systems, where the nonlinearities are
(strictly) monotonically increasing and saturated. We have proposed necessary
and sufficient conditions on the spectrum of the adjacency matrix of the network
which are required for the existence of multiple equilibria not contained in R’} /R™
when the nonlinearities assume both sigmoidal and nonsigmoidal shapes. The
stability properties of these equilibria have also been investigated. Although we
cannot analytically quantify the number of such equilibria, we can locate them in
the solid disk whose radius is given by the norm of the positive equilibrium z*.

When interpreted in terms of collective decision-making of agent systems, our
results can be recapitulated as follows:

o For a low value of the social effort parameter 7 (i.e., for 7 < 1), the agents are
not committed enough to reach an agreement;

e For values of m between 1 and %1(11)’ the agents have the right dose of

commitment to achieve an agreement among two alternative options x ™

e For values of m bigger than A%l(H)’ the agents start to become overcommitted,

R

which can lead to other possible decisions, depending on the initial conditions
of the system. All these extra decisions represent disagreement situations, i.e.,
they do not belong to R’} or R™.

Future work includes gaining a better understanding of the bifurcation pat-
tern for m > A%l(H)’ and in presence of “informed agents” in the sense of [3]. It

is well-known that the algebraic connectivity is strongly influenced by the topol-
ogy of the network [25]. We expect that similar arguments apply tamquam to
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Figure 3: Example 2. Equilibria for a system (7) of size n = 20. (a): N. of equilibria
(black) found on 10* trials for 500 different values of 7, and n. of orthants to which
l1Z]l2
= ll2
to the corresponding value of 21, as 7 changes. (c): Distribution of the equilibria
1zl
[ERlP
of positive eigenvalues of the Jacobian linearization (colormap), and to the n. of
components of negative sign (radial angle). Black squares on the unit disk are zT
and z~ .

these equilibria belong (red). (b): Norm ratio of the equilibria Z with respect

according to the norm ratio (radial distance from origin), to the number

An—1(H). What remains to be checked is whether these topological considerations
are applicable to concrete examples of collective decision-making.
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Abstract

In this work we consider a collective decision-making process in a
network of agents described by a nonlinear interconnected dynamical
model with sigmoidal nonlinearities and signed interaction graph. The
decisions are encoded in the equilibria of the system. The aim is to
investigate this multiagent system when the signed graph representing
the community is not structurally balanced and in particular as we
vary its frustration, i.e., its distance to structural balance. The model
exhibits bifurcations, and a “social effort” parameter, added to the
model to represent the strength of the interactions between the agents,
plays the role of bifurcation parameter in our analysis. We show that,
as the social effort increases, the decision-making dynamics exhibits
a pitchfork bifurcation behavior where, from a deadlock situation of
“no decision” (i.e., the origin is the only globally stable equilibrium
point), two possible (alternative) decision states for the community are
achieved (corresponding to two nonzero locally stable equilibria). The
value of social effort for which the bifurcation is crossed (and a decision
is reached) increases with the frustration of the signed network.

1 Introduction

In this paper we want to study a nonlinear model for decision-making in a com-
munity of agents where antagonistic interactions may exist between the agents.
Indeed, while collaboration between agents is often assumed in order to reach a
common decision (for instance in applications such as collective behavior in ani-
mal groups [3, 4], cooperative control in robotics [5, 6], or opinion forming [7, 8]),
there are applications in which restricting to collaborative interactions means over-
simplifying the relationship among the agents [9, 10]. Classes of multiagent sys-
tems in which the presence of antagonism is plausible include for instance “social
networks”, i.e., groups of individuals interacting and exchanging opinions in a
friendly /unfriendly manner or trusting/mistrusting each other. Other scenarios in

111
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which antagonism is unavoidable are team games, where different teams have to
compete against each other, or parliamentary democracies, where parties can be
allied or rival.

Signed networks [11, 12] are a natural framework to model a community of
agents where both cooperative and antagonistic interactions coexist: a positive
sign labeling an edge between two agents represents a friendly (or cooperative)
relationship, while a negative sign labeling an edge an unfriendly (or competitive)
relationship. If the group of agents can be divided into two subgroups such that
the agents inside each group are mutual friends (i.e., they are linked by edges with
positive weight) while the agents across the two subgroups are enemies (i.e., they
are linked by edges with negative weight), we say that the network is structurally
balanced [13, 14]. If we assume that a network is undirected and connected, an
equivalent condition to structural balance is that the smallest eigenvalue of the
normalized signed Laplacian £ is zero, A\1(£) = 0 in the notation we introduce
below. As for instance the works [15-18] show, real signed social networks are in
general not structurally balanced.

To model the evolution of the opinions of the agents in a community repre-
sented as a signed social network we use the model of opinion forming previously
introduced in [3, 19, 20]. This model is characterized by sigmoidal and saturated
nonlinearities, describing how the agents transmit their opinion to their neighbors.
It has a (signed) Laplacian-like structure at the origin and it is endowed with a
social effort parameter = which in our analysis plays the role of bifurcation param-
eter. Our aim is to study how the strength of the commitment among the agents,
represented by 7, affects the presence and stability of the equilibrium points of the
system, which represent the decision states for the community. Under our assump-
tions, the system is monotone [21] if and only if the corresponding signed social
network is structurally balanced. In this case the behavior of the system can be
easily deduced from [3, 19, 20], where the authors consider a cooperative system
(i.e., only friendly interactions exist between the agents), which is a particular case
of monotone system. In this case the analysis shows that for increasing values of
the social effort parameter 7, the system undergoes two sequential pitchfork bi-
furcations: after the first bifurcation the number of equilibria jumps from one to
three, while after the second bifurcation multiple (more than three) equilibrium
points arise. In particular when crossing the first bifurcation the system passes
from having the origin as globally asymptotically stable equilibrium to a situa-
tion in which two nonzero locally stable equilibria exist while the origin becomes
a saddle point. This situation is maintained up to the second bifurcation where
novel equilibria, stable or unstable, appear. In the context of social interactions
this behavior can be interpreted as follows: if the social effort between the agents
is small then no decision is achieved (the origin is the only attractor), while two
alternative decision states can be reached if the agents have the “right” amount of
commitment. However, by further increasing the social effort, the agents may fall
in a situation of overcommitment where multiple (more than 2) decisions are possi-
ble. For cooperative networks the first threshold value is fixed and constant, while
the second threshold value depends on the algebraic connectivity of the network.

We show in this work that if we consider signed networks that are structurally
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unbalanced then, while the qualitative behavior of the system does not change,
the value of social effort parameter for which the first bifurcation is crossed is no
longer constant but grows with the smallest eigenvalue of the normalized signed
Laplacian of the network, which for structurally unbalanced networks is strictly
positive (A1(£) > 0). In particular, its value increases with the amount of “frus-
tration” encoded in the signed network, i.e., with the amount of “disorder” that
the negative edges introduce in a network, see [15] for a more thorough statistical
physics interpretation. First introduced by Harary [11, 22] and denoted “line in-
dex of balance”, the frustration is a standard measure to express the distance of a
signed network from a structurally balanced state and is defined as the minimum
(weighted) sum of the negative edges that need to be removed in order to obtain
a structurally balanced network, see [2] for details.

For our model of decision-making, this means that when we consider signed
networks with higher frustration, the first bifurcation is crossed at higher values
of the social effort parameter 7, meaning that a higher commitment is required
from the agents in order to converge to a nontrivial equilibrium point. From
a sociological point of view, the result admits a fairly reasonable interpretation:
the more in a community there are “unresolved tensions” among the agents (i.e.,
unbalanced interactions, as measured by the frustration), the more commitment
is required by the agents to achieve a common nontrivial decision and to “escape”
the (trivial) zero equilibrium point. On the other hand, the value of social effort
for which the second bifurcation is crossed is independent of the frustration of
the network [2], meaning that for highly frustrated graphs the range of social
commitment values for which only two nontrivial equilibria are present shrinks. As
a concrete application of these results, in a recent work (see [18]) we have described
the process of government formation in parliamentary democracies as a collective
decision-making process where the members of the parliament (the agents) are
required to cast a vote of confidence (the decision) to a candidate cabinet coalition.
In this context, the social effort parameter « is a proxy for the complexity of the
government negotiations (measured as duration of the negotiation phase), while
a signed network describes the composition of the parliament after each election
with signs representing party alliances/rivalries. These “parliamentary networks”
are in general not structurally balanced and their frustration correlates well with
the duration of the government negotiation processes.

Because of the nonlinearities the behavior of our system is fundamentally dif-
ferent from that of [14]. In the case of [14] in fact, structural balance leads to
bipartite consensus and structural unbalance to asymptotic stability. In our case,
instead, balanced and unbalanced cases are qualitatively similar, with only the
bifurcation point gradually moving to higher values of social commitment as the
frustration grows. In this respect, the model we present here has a more reasonable
behavior than the one in [14], at the cost of a higher complexity.

Even though the behavior of the system in the structurally unbalanced case is
qualitatively similar to the structurally balanced case, the technical tools that must
be used to show the results become much more challenging because the system
is no longer monotone. An important technical contribution of this paper is in
fact to develop methods able to perform a global state space analysis of a broad
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class of nonlinear nonmonotone interconnected systems which are not diagonally
dominant. Familiar examples of Hopfield-like neural networks fall in this category
[23, 24]. Another noteworthy result we obtain is a description of the region in
which all equilibria of the system must be contained. In particular also the upper
bound to the 1-norm of the equilibria we provide depends on the frustration of the
signed network.

The paper investigates also a discrete-time version of our multiagent decision-
making system. Such extension is nontrivial in several directions: for instance new
phenomena, like period-2 limit cycles, appear in the discrete-time case. Also the
techniques that must be used to prove the results are largely different from those
of the continuous-time case. In particular, we show that the first bifurcation occur-
ring at the origin is either a pitchfork or a period-doubling bifurcation, depending
on the relative positions of the corresponding threshold values for the social effort
parameter w, where the value for which a pitchfork bifurcation is crossed is the
same as in the continuous-time case. Interestingly, we show that if the signed
network has zero or small frustration, the value of m for which a period-doubling
bifurcation is crossed is always bigger than the usual bifurcation threshold.

The rest of the paper is organized as follows: in Section 2 we introduce prelim-
inary material. In Sections 3 and 4 we present our results for collective decision-
making over signed networks in continuous- and discrete-time, respectively. The
results are discussed and interpreted in Section 5. Numerical simulations and
examples are shown in Section 6. Technical preliminaries (useful Lemmas and
Theorems) and most of the proofs are put in the Appendices at the end of the

paper.

2 Preliminaries

2.1 Notation and linear algebra

Given a matrix A = [a;;] € R™"™, A > 0 means element-wise nonnegative, i.e.,

a;; >0 for all 4,5 =1,...,n, while A > 0 means element-wise positive, i.e., a;; >0
for all 4,5 =1,...,n. The spectrum of A is denoted A(A) = {\1(A),...,\n(4)},
where A\;(A),i=1,...,n, are the eigenvalues of A. A matrix A is called irreducible

if there does not exist a permutation matrix P s.t. PT AP is block triangular. If
x,y € R™ then = >y (x > y) means that x; > y; (resp., z; >y;) foralli=1,...,n.
Given two matrices A, B € R™ ", the notation A ~ B means that A and B are
similar, and hence that they have the same eigenvalues. Given a diagonal positive
definite matrix D, we denote the unique (diagonal) positive definite square root

1
of D by D2. The symbol 1 indicates the vector of ones (1,, is used when the
dimension m is not clear from the context) and Oy s, the n x m zero matrix (0 if
it is clear from the context).

2.2 Signed graphs

Let G = (V,€) be a graph with vertex set V (such that card(V) = n) and edge
set £ CVx V. Let A= [a;;] € R"*" be the adjacency matrix of G, i.e., a;; =0 if
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and only if (j,7) € £. In this work we consider undirected and connected graphs
without self-loops.

A graph § is signed if each of its edges is labeled by a sign, that is, sign (aij) =
sign (aji) ==+1if (i,5) € £. The signed Laplacian of a graph G is the symmetric
matrix L = A — A, where A = diag{di,...,0n} and each diagonal element J; is
given by §; = Z?:l |aij , i =1,...,n [14]. The normalized signed Laplacian of a
graph G, see [25, 26], is the non-symmetric (symmetrizable, see Appendix A for a
definition) matrix defined as

L=A'L=T-ATA (1)

Notice that since the graph G is connected, it does not have isolated vertices, hence
§; 20 for all i and the matrix A~! is well-defined and positive definite.

All the matrices we consider in this work are either symmetric (e.g., A and L)
or symmetrizable (e.g., £), hence they have real eigenvalues, which we assume to
be arranged in a nondecreasing order. Let A\;(A), A\;(L) and \;(£), i =1,...,n, be
the eigenvalues of A, L and L, respectively. By construction the eigenvalues of the
signed Laplacian L and the normalized signed Laplacian £ are nonnegative, which
can be easily shown using the Gersgorin’s Theorem, see [27, Thm 6.1.1].

A cycle of a signed graph G is said positive if it contains an even number of
negative edges, negative otherwise. A graph G is structurally balanced if all its
cycles are positive. Equivalent conditions for G (connected) to be structurally
balanced are the following [14]: (i) there exists a partition of the node set V =
V1 UV such that every edge between Vi and Vs is negative and every edge within
V1 or Vs is positive; (ii) there exists a signature matrix S = diag{si,...,s,} with
diagonal entries s; = +1 (i = 1,...,n), such that SL£S has all nonpositive off-
diagonal entries; (iii) A1(£) = 0. The frustration index of a signed graph G is
defined as

1
= i = L|+SLS]i4, 2
Oy, TS g

where [-];; indicates the 7, element and |-| the element-wise absolute value, and
it provides a measure of the distance of G from a structurally balanced state [2].
If G is structurally balanced, ¢(G) = 0.

2.3 Monotone systems

Consider the system
&= f(x), (0)=zo 3)

where f is a continuously differentiable function defined on a convex open set
U CR™. Let x(t,z) be the solution z(t) of (3) s.t. z(0) = z.

Let S be a signature matrix, i.e., S = diag{si,...,sn} with s; = £1 Vi, and let
SR™ indicate an orthant of R”, SR™ = {& € R™ : s;2; > 0,4 =1,...,n}. The partial
ordering <ggn is preserved by the solution operator z(t,-) and the system (3) is
type SR™ monotone if whenever Z,y € U with & <ggn g then z(t,z) <ggn x(t,73)
for all ¢ >0 [21].
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Lemma 1 (2.1 in [21]). If f € CY(U) where U is open and convex in R" then
x(t,) preserves the partial ordering <ggrn for t > 0 if and only if S%(m)s has
nonnegative off-diagonal elements for every x € U.

Therefore, a system (3) is monotone if and only if the graph described by the

Jacobian g—g as adjacency matrix is structurally balanced with fixed S Vx € U.

3 Decision-making in antagonistic multiagent
systems in continuous-time

3.1 Problem formulation

To model the process of decision-making in a community of n agents represented
by a signed network G, we consider the following class of nonlinear interconnected
systems,

&t =—-Ar+7mAY(z), xR (4)

The state vector = [z1 --- 2|7 € R" represents the agents’ opinions, A = [a;]
is the adjacency matrix of the network G and describes how the agents interact
with each other, A = diag{di,...,d,}, m > 0 is a positive scalar parameter and
Y(z) = [Y1(21) - Yn(x,)]. Each nonlinear function 1);(x;) describes how an
agent ¢ transmits its opinion x; to its neighbors in the network. This term is then
weighted first by the element a;;, describing the influence between agents ¢ and
J (positive/friendly if a;; > 0 or negative/unfriendly if a;; < 0), and then by the
parameter 7 representing the global “social effort” or “strength of commitment”
among the agents [3]. The equilibria of the system represent the decision states
for the community.

We assume that the signed network G is undirected (two agents able to influ-
ence each other’s opinion share the same amount of trust/distrust in each other),
connected (there are no isolated agents) and without self-loops, meaning that the
signed adjacency matrix A is symmetric, irreducible and with null diagonal. We
also assume that a Laplacian-like assumption relates A and A, 6; = >_ j ’aij‘. Fi-
nally, we assume that each nonlinear function ¢;(z;) : R — R of the vector ¢ (z)
satisfies the following conditions

1/)1(331) = —’(/Ji(—l‘i), Va; R (odd) (A.l)
gf: (x;) > 0,Vz; € Rand giz (0)=1 (monotone) (A.2)
lim ¢;(z;) =+1 (saturated) (A.3)

r; —+oo

(sigmoidal). (A.4)

i) strictly convex Vz; <0
! strictly concave Vx; >0

The system (4) can be rewritten in a “normalized” form,

i=A(—z+nH{(z)), zeR", (5)
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where we consider the normalized interaction matrix H := A~1A. The Jacobian of
(5) is J(x) = —A(I—WH%(Q:)) which at the origin for 7 =1 reduces to J = —-AL
(where £ is the normalized signed Laplacian of the network); hence, under our
assumptions and from Lemma 1, the system (5) is monotone if and only if the
signed network G is structurally balanced.

Our aim is use bifurcation analysis to investigate how the social effort parame-
ter 7 (our bifurcation parameter) affects the presence of the equilibrium points of
the system (5).

3.2 Structurally balanced case

Previous works, such as [19, 20], have studied the behaviour of the system (5)
when the adjacency matrix A of the network is nonnegative, i.e., when the system
is cooperative [21]. These results, summarized in the following theorem, still hold
when the system is in general monotone, that is, when the network G described
by the matrix A is structurally balanced.

Theorem 1 ([20]). Consider the system (5) where each nonlinear function 1;(-),
i =1,...,n, satisfies the properties (A.1)+(A.4). Assume that the signed graph
G is structurally balanced and let S be the signature matrix s.t. SLS has all
nonpositive off-diagonal entries (|A| = SAS).
(i) When 7 < 1, the origin is the unique equilibrium point and it is asymptoti-
cally stable.
(i) When m = m = 1, the system undergoes a pitchfork bifurcation, the origin
becomes unstable and two new equilibria appear, in the orthants described by
S and —S, respectively, denoted SR} and SR”. These equilibria are locally
asymptotically stable for all values of m > 1, with domain of attraction at
least equal to SR’} and SR™, respectively.

(iii) If X2(L) < 1 and simple, when m = 73 = %, the system undergoes
a second pitchfork bifurcation, and new equilibria in other orthants of R"
appear. When 7 > 79, these equilibria may be stable or unstable.

3.3 Structurally unbalanced case

In this section we want to introduce our novel results, i.e., the extension of The-
orem 1 to signed networks which are structurally unbalanced: we show that, by
redefining the threshold values m; and mg, the system (5) behaves in a similar
manner as the one described in Theorem 1.

Theorem 2 summarizes our findings. We proceed as follows: first, in (i), we
prove that the origin is the unique equilibrium point for the system when 7 < 7y
and it is globally asymptotically stable, where m; depends on the smallest eigen-
value of the normalized signed Laplacian £. Then, in (ii) we show that when
m = 71 the system undergoes a pitchfork bifurcation and two new equilibria ap-
pears, which are locally asymptotically stable for all values of the bifurcation
parameter in the interval (m1,72), where w3 depends on the second smallest eigen-
value of the normalized signed Laplacian £. Similarly to [3, 20], the proof relies on
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bifurcation theory. Lack of monotonicity however implies that most of the proofs
require different arguments than those used in [3, 20]. At w2 the system bifurcates
again and new equilibria appear, see (iii).

Theorem 2. Consider the system (5) where each nonlinear function ¥;(-), i =
1,...,n, satisfies the properties (A.1)=(A.4). Assume that the signed graph G is
structurally unbalanced with normalized signed Laplacian L.

(i) When w < 71 = #ﬂﬁ)’ the origin is the unique equilibrium point of (5)
and it is globally asymptotically stable.

(ii) Let A1(L) be simple,

(ii.1) (existence): when 7 crosses m1, the system undergoes a pitchfork bifur-
cation and two new equilibria (z* and —x*) appear;

(ii.2) (stability): when 7 > w1, the origin is an unstable equilibrium point,
while the equilibria +x* = 0 are locally asymptotically stable for all
values of 7 € (71, m2), with mg = ﬁﬂﬁ)"

(ii.3) (uniqueness): when w € (w1,m2), the system admits exactly three equi-
libria, the origin and the two nontrivial equilibrium points +z* = 0.

(iii) If A2(L) is simple, when m = g, the system undergoes a second pitchfork
bifurcation and new equilibria appear.

Proof in Appendix B.

Remark 1. It follows from the assumption (A.1) that if the system (5) admits an equi-
librium point 2* # 0, then —2* is also an equilibrium point.

Remark 2. Differently from Theorem 1(iii), in Theorem 2(iii) the assumption Ao(L£) < 1
is not needed: if the network G is structurally unbalanced and connected it is always true
that Ao(L) < 1, as shown in Lemma 2 below. Therefore, if Ao(L£) is simple, o = ﬁz(ﬁ)
is always well-defined (i.e., strictly positive and greater than 71). On the other hand,
examples of structurally balanced graphs for which Ay(L£) > 1 are complete graphs, whose
adjacency matrix is a Fuclidean distance matrix. This means that in the structurally
balanced case when Ao(L£) > 1 the system (5) admits only 3 equilibrium points (0, +x*)
for all values of m > m; and that the trajectories converge either to 2™ or —z*. However,
this situation can never happen in the structurally unbalanced case: if 7 is “large enough”
(i.e., it is above the threshold 79) the system (5) will always admit new equilibria (other
than 0, &2*), which may be attractors.

Lemma 2. Let G be a signed connected network with normalized signed Lapla-
cian L. If G is structurally unbalanced, A2(L) < 1.

Proof in Appendix C.

To conclude this part, we show that for m > 7 the 1-norm of the equilibria of
the system is upper bounded by 7(n — 2¢(G)), where €(G) is the frustration of the
signed network. Moreover, if the matrix £ is symmetric (i.e., if A =41), we can
show that the solutions of (5) are all bounded and converge to a set ().(g), which
implies that all the equilibria of the system (5) belong to Qg)-
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Theorem 3. Consider the system (5) where each nonlinear function ;(-), i =
1,...,n, satisfies the properties (A.1)=(A.4). Let €(G) be the frustration of the
signed network G defined in (2), and L its normalized signed Laplacian.

(i) If x* is an equilibrium point of (5), then ||z*||; < m(n — 2¢(G)).
(ii) Let m > 1. Under the assumption that L is symmetric (i.e., A = §I), the
trajectories of (5) asymptotically converge to the set Qg), where

Qeg) = {z € R : |Jzfly <m(n —2¢(G))}

Proof in Appendix D.

Proposition 1. Let G be a signed graph with normalized signed Laplacian L,
and assume that L is symmetric (i.e., A = 3I). Then it is possible to derive an
upper bound for the social effort at the first bifurcation point, 71, which depends
on the frustration of the network €(G):

1S7T1§min{#€(g),m}. (6)

Proof in Appendix E. Notice that if the frustration is zero (i.e., the network is
structurally balanced) then 7 = 1.

4 Discrete-time

The Euler approximation of system (5) with step ¢ is

xi(k+1) = (1—ed;) z;(k) +87Tzaij¢j<.%‘j(k)), i=1,...,n. (7)

VE)

Let 2y i= (k) = [e1(k) -+ 2 ()] and t(ay) = [ (21 (k) - (2 (k))]T. Equa-

tion (7) can be rewritten in a more compact form as follows:
Tpy1 = (I —eD)zy +emAY(ay). (8)
The Jacobian at the origin is given by:
Je=I—ecA+emrA=1—¢cL, (9)

where
L,T:AfwA:A(Ifw(IfE)) (10)

and L is the normalized signed Laplacian of the network. As in Section 3, we want
to study how the social effort parameter 7 affects the existence of the equilibria of
the system (8), again relying on tools from bifurcation analysis [28].

A local bifurcation occurs at the origin if the Jacobian J; has an eigenvalue
with absolute value equal to 1 (that is, equal to £1 since J is symmetric and has
real eigenvalues). When 7 is small and in particular is such that all the eigenvalues
of Jr have magnitude less than one, following the proof of [29, Thm 2] it is possible
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to prove (under the additional condition emax;d; < 1) that the origin is globally
asymptotically stable and hence the unique equilibrium point of the system (8).
As 7w grows, the magnitude of the eigenvalues of J; increases and for values of «
such that J; has a simple eigenvalue A at 1 the system (8) can undergo either a
pitchfork (A =41) or a period-doubling (A = —1) bifurcation [28].

Let A\;(Jz) and A\;(Lz), ¢ = 1,...,n, be the eigenvalues of J and L, respectively,
which we assume to be arranged in a nondecreasing order. We denote 7 the value
of social effort for which the biggest eigenvalue of J; crosses +1 and 71 4 the value
of social effort for which the smallest eigenvalue of J; crosses —1:

T M(Jm) =1, mig: /\1(J7f1,d) =-1. (11)

Remark 3. From (9), the biggest and smallest eigenvalues of Jr are given by
An(Jr) =1—eX1(Lx), M(Jr)=1—eln(Lnr),

which means that Jr is Schur stable (i.e., its eigenvalues have magnitude strictly less
than one) if and only if the following two conditions hold:
(i) A1(Lx) >0, that is, Lr is positive definite.
From (10) and since A is positive definite, this condition is equivalent to I —7(I—L)
having (strictly) positive eigenvalues, i.e., 0 <1—m(1— A1(£));
(ii) eAn(Lx) <2, that is, eLr — 21 is negative definite.
Hence 71 is the value of social effort for which the smallest eigenvalue of Lr crosses 0,
while 7y g is the value of social effort for which the biggest eigenvalue of L crosses 2:

1
7T11/\1(LW1):0:>7T1:T1(£) (12)
2
T1,d - An(Lﬂ'l,d) s (13)

In the analysis of the discrete-time model (8) (see Theorem 4 below) it is
relevant to know where 7 4 lies compared with 71. The next proposition shows
that m < 7 g always holds if the network is structurally balanced (A1 (£) = 0) or
if it is structurally unbalanced but A1 (£) > 0 is small.

Proposition 2. Assume that emax;d; < 1. If any of the two following conditions
on the signed graph G with normalized signed Laplacian L is satisfied:
(i) G is structurally balanced (i.e., A\1(£)=0), or
(ii) G is structurally unbalanced and A1(L) < 2 — A\, (L),
then m < T1,d-
Proof in Appendix F.
The next two lemmas show that if the system (8) admits a nontrivial equi-

librium point then 7 > 7 (Lemma 3), while if it admits a period-2 orbit then
7> q (Lemma 4).

Lemma 3. Consider the system (8) where each nonlinear function ;(-), i =
1,...,n, satisfies the properties (A.1)+(A.4). If 2* =0 is an equilibrium point of
the system (8) then 7 > 7.

Proof in Appendix G.
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Lemma 4. Consider the system (8) where each nonlinear function ;(-), i =
1,...,n, satisfies the properties (A.1)=(A.4). If e < maii&, and the system (8)

admits a period-2 limit cycle (3K > 0 such that xyo = x), for all k > K) then
T™> T4

Proof in Appendix G.
[—~—— ..
Remark 4. The condition & < Thax; 5;

on the step size € in the Euler approximation.

imposed by Lemma 4 represents an upper bound

We are now ready to state our results for the discrete-time system (8), sum-
marized in Theorem 4. Similarly to Theorem 2, we show first that the origin is
the unique equilibrium point for the system when = < min{my,7 4} and that it
is globally asymptotically stable, see Theorem 4(i). However, differently from the
continuous-time case, when m crosses min{m,m 4} two different behaviors can
happen. If 71 < m 4 we expect the system (8) to undergo a pitchfork bifurca-
tion when 7 = m; while if m > 7 4 we expect a period-doubling bifurcation when
7 =1 4, see Theorem 4(ii). The special case where w1 = 7y 4 is here not discussed,
but the intuition is that a Neimark-Sacker bifurcation occurs at the origin when
7w =m,q=m1 [28]. Observe also that 7 > 71 and 7 > m; 4 are necessary conditions
(not only sufficient) in order for the system (8) to admit a nontrivial equilibrium
or a periodic solution, respectively, as shown in Lemma 3 and Lemma 4.

Finally, notice that the following theorem holds also for structurally balanced
networks. However, in that case the condition w1 < 7y 4 would always be satisfied
(see Proposition 2) meaning that the formulation of theorem could be simplified.

Theorem 4. Consider the system (8) where each nonlinear function ;(-), i =
1,...,n, satisfies the properties (A.1)=(A.4). Assume that the signed graph G is
structurally unbalanced with normalized signed Laplacian L. Let Jr, L, m1 and
71,4 be as in (9), (10), (12) and (13), respectively. Assume that 1 —emax;d; > 0.
(i) If m < min{my,m 4} then the origin is the unique equilibrium point of the
system (8) and it is globally asymptotically stable.
(i) If my < my 4 and the biggest eigenvalue of Jr,, A\n(Jx,) = +1, is simple, when
7w = the system (8) undergoes a pitchfork bifurcation;
If 1 > 1 4 and the smallest eigenvalue of Jr, ,, A1 (Jr, ;) = —1, is simple,
when 7 = 7y 4 the system (8) undergoes a period-doubling bifurcation.

Proof in Appendix H.

Notice that, compared with Theorems 1 and 2, Theorem 4 considers only the
first bifurcation the system (8) undergoes at the origin, i.e., it does not consider
for instance secondary bifurcations at the origin happening for values of 7 such
that Ap—1(Jz) = +1 or Aa(Jr) = —1.

Corollary 1. Consider the system (8) where each nonlinear function ;(-), i =
1,...,n, satisfies the properties (A.1)+(A.4). Let ¢(G) be the frustration of the
signed network G defined in (2).
(i) If z* is an equilibrium point of (8), then ||z*||1 < w(n — 2¢(G)).
(ii) If A =61 with de < 1, the trajectories of (8) asymptotically converge to the
set {x € R": ||z|1 < 7n}.
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The proof is omitted since (i) follows from the observation that the discrete-
and continuous-time models share the same equilibrium points, therefore the upper
bound on the 1-norm of the equilibria found in Theorem 3(i) still holds, and (ii)
follows from the fact that the nonlinearities are saturated (and can be shown for
instance using the Lyapunov function V' (z) = ||xg||1 — 7n for all ||xk|l1 > 7mn and
V(z1) = 0 otherwise).

5 Discussion and interpretation of the results

Comparing Theorem 1 with Theorem 2, the general behavior of the continuous-
time system (5) (illustrated in Figure 1) does not change when, instead of a struc-
turally balanced network, we assume that the network is structurally unbalanced.
However, while in the structurally balanced case (see Figure la) the first thresh-
old value for the social effort parameter 7 is constant (71 = 1), in the structurally
unbalanced case (see Figure 1b) this value is strictly greater than 1 and increases
with the smallest eigenvalue of the normalized signed Laplacian, A\;(£). In a recent
work [2] we have shown that A\ (L) approximates well the frustration of a signed
network G (measured by €(G) introduced in equation (2)), while the intuition is
that A\o(£) is independent from the frustration ¢(G). As a consequence, a higher
frustration €(G) (reflecting a situation where the system (5) is “far” from being
monotone) implies (i) a higher value of m; and (ii) the shrinkage of the interval
(m1,m2) for which only two alternative equilibria are admitted. These conclusions
are illustrated in Example 2.

In the context of social networks the decision-making process (4) can be sum-
marized as follows:

e m < m: No decision will be reached if the social effort among the agents is
small.

o 7 € (m,m2): The “right” level of commitment among the agents leads to
two possible (alternative) decisions. If the signed social network is not struc-
turally balanced, a higher frustration implies that a higher effort will be
required from the agents in order to achieve this decision.

o 7 >mo: An overcommitment between the agents (high value of social effort)
leads to a situation where several alternative decisions are possible.

When we instead compare Theorems 1 and 2 with Theorem 4, we observe that the
discrete-time system (8) exhibits a “richer” behavior, in that it admits (stable)
periodic solutions, as illustrated in Figure 2 (which, for the sake of simplicity, does
not consider secondary pitchfork or period-doubling bifurcations at the origin).
This is related to the presence of a new threshold value for the parameter 7, de-
noted 7y 4: understanding where 7y 4 lies compared with 71 plays a key role when
investigating the behavior of the system (8) over a signed network. In particular,
Proposition 2 suggests that the condition 71 > 7 4 cannot hold unless a signed
network is structurally unbalanced and has high frustration (i.e., A1(£) > 0).
This implies first that, if we consider networks that are structurally balanced
(for which 7y < 7 4 always holds) or that are structurally unbalanced for which
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Figure 1: The system (5) undergoes two pitchfork bifurcations, respectively for
m =m and m = mg. The bifurcation diagram for two components z; and x; is
here shown for two different signed networks. (a): Structurally balanced network
(monotone system). (b): Structurally unbalanced network.
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Figure 2: The system (8) undergoes a pitchfork bifurcations and a period-doubling
bifurcation, respectively for m = my and m = 7y 4. The bifurcation diagram for
two components z; and x; is here shown for three different signed networks. (a):
Structurally balanced network. (b): Structurally unbalanced network with m; <
m,4- (¢): Structurally unbalanced network with 71 > 7y g.

7 < 71,4 (typically, with low frustration) the general behavior of the discrete-
time system (8) resembles that of its continuous-time counterpart, see Fig. 2a and
Fig. 2b: the crossing of a (pitchfork) bifurcation yields two (alternative) nontrivial
equilibrium points representing two possible (alternative) decisions. Hence, the
general idea that the higher is the frustration of the network the higher is the social
effort needed to converge to a nontrivial equilibrium point still holds. Instead, if we
consider networks that are structurally unbalanced for which 7y > 7 4 (typically,
with high frustration), see Fig. 2c, then there exists an interval of values for the
social effort parameter, (7 4,71), for which the collective decision-making process
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still ends in a deadlock situation where the opinions of the agents do not settle but
keep fluctuating: only by further increasing the commitment among the agents the
process can be settled and the community can reach a decision. In conclusion, in
the discrete-time model the presence of high frustration in the graph leads to agents
who will never cease to change opinion (a somewhat artificial behavior). Other
recent works in the literature that propose models characterized by fluctuations
of opinions of the agents are for instance [30, 31].

6 Numerical Examples

In this section we first illustrate the bound (6) in Proposition 1 (Example 1). As
a byproduct we observe (numerically) that the bound is tight if the smallest and
largest eigenvalues of £ satisfy the condition A1(L) < 2 — A, (L) (typically, if the
network does not have high frustration). Then, we show the behavior of the sys-
tem (5) over signed (structurally unbalanced) networks with increasing frustration
(Example 2 and Example 3). In Example 4 we show that when the social effort
parameter 7 crosses the second threshold mo the system admits multiple equilib-
ria which are stable (i.e., several decision states for the community are possible).
Example 5 is used to illustrate a case which has not been treated by our analysis.
Indeed, in Example 5 we illustrate the behavior of the system (5) in presence of
symmetries implying an algebraic multiplicity of A;(£) higher than 1. The case
where the smallest eigenvalue of £ is not simple is in fact not covered by Theorem 2.
However the intuition, supported by the reading of [32, 33], is that when 7 > m;
the system admits multiple (more than three) equilibria. Finally, in Example 6 we
illustrate the behavior of the discrete-time system (8) and compare it with that of
the continuous-time system (5).

If not specified otherwise, we assume that each nonlinear function ;(-) (i =
1,...,n) is given by the hyperbolic tangent ¥ (¢) = tanh(e). Moreover, to com-
pute numerically the frustration €(G) of a signed network G we use the algorithm
proposed in [34].

—— Example 1

This example wants to illustrate the bound (6) in Proposition 1 and show that
it holds also for graphs whose normalized signed Laplacian is not symmetric. In
Fig. 3 we consider two sequences of signed networks G with n =500 agents (in which
the edge weights are drawn from a uniform distribution and p = 0.8 is the edge
probability) and with increasing frustration €(G). In the first sequence (see Fig. 3a),
each adjacency matrix A of the network is rescaled so that |A|1 = 61, which implies
that the normalized signed Laplacian £ is symmetric. Instead, in the second
sequence (see Fig. 3b), each matrix £ is not symmetric (but is symmetrizable).
As Fig. 3 illustrates, the bound (6) holds for both sequences; moreover, when the
frustration is small (numerically, when the condition A1 (£) < 2—\, (L) is satisfied)
the upper bound #e(g) for my is tight (this is not surprising since we know that
A1(L) approximates well the frustration).
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n
oML T2 4 1 2eg)

0 50 100 150 200 250 0 50 100 150 200 250
frustration €(G) frustration €(G)
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Figure 3: Example 1. Plot of 7,79 and for two sequences of signed

n2c0)’
networks with increasing frustration €¢(G). (a): Sequence 1: for each network, the
normalized signed Laplacian £ is symmetric. (b): Sequence 2: for each network,
the matrix £ is not symmetric. A full (resp., empty) symbol means that \1(£) <
2—=Xxn(L) (resp., A1 (L) > 2 — Ap(L)); for clarity, a dashed line shows the maximum

value of frustration above which the condition Aj(£) < 2 — An (L) does not hold.

—— Example 2

We consider three signed networks with n = 20 agents in which the edge weights

are drawn from a uniform distribution and p = 0.5 is the edge probability. These
networks are chosen to be structurally unbalanced and with increasing frustration.
In Fig. 4 the euclidean norm of the equilibria of the system (5) for values of 7 in
{0.005,0.010,...,4} is depicted. As Table 1 shows, the smallest eigenvalue of the
normalized signed Laplacian increases with the frustration of the network while
the second smallest eigenvalue remains almost constant, hence the interval for w
for which the system admits only two equilibria becomes smaller (compare Fig. 4a
and Fig. 4c).

—— Example 3

Consider a network G with n = 100 agents in which the edge weights are drawn
from a uniform distribution and p = 0.8 is the edge probability. Let A = [a;;] be
its weighted nonnegative adjacency matrix. Consider now a sequence of signed
networks Gg with weighted adjacency matrices Ag = [aﬁiﬂ constructed such that

’AB| = A and their signature is dependent on a parameter 8 € {0,0.05,0.1,...,1}: if
aij # 0 then ag,; # 0 and Plag,, <0] = 3. When =1, A; = —|A|. As 3 increases
also the frustration of the networks increases. For each network, we numerically
compute the equilibria z* of the system (5) for values of 7 in {1,1.05,...,9} and
their 1-norm ||z*||1: let X = {&* € R™: z* is an equilibrium point of the system (5)}
be the set of equilibria. In Fig. 5, for each network of the sequence we plot

1
— max [lz*]]1 (the maximum 1-norm of the equilibrium points divided by ) for
T a*e

each value of 7; the colormap illustrates the sequence of signed networks Gz with
increasing frustration. As Theorem 3 states, the maximum 1-norm of the equilibria



Paper C The role of frustration in collective decision-making dynamical processes on
126 multiagent signed networks

is upper bounded by 7(n—2¢(Gg)), where €(Gg) indicates the frustration of Gg: as

the frustration increases, the bound decreases.
L

*
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Figure 4: Example 2. Norm of the equilibrium points of the system (5) as a function
of w. The networks G we use in this example are structurally unbalanced, with
increasing frustration €(G), see Table 1. (a): €(G) = 0.677. (b): €(G) = 4.285. (c):
e(G) = 5.536.

| €(9) A1 Ao 1 ™

(a) | 0.677 0.065 0.500 1.069 2.000
(b) | 4.285 0.332 0.491 1.496 1.966
(c) | 5.536 0.475 0499 1.905 1.995

Table 1: Example 2. Values of frustration, first two eigenvalues of the normalized
signed Laplacian and bifurcation points for the three cases, (a), (b) and (c), depicted
in Figure 4.

f  frustration

0.45 [ 40.96

0.4H39.06
10.35 | 34.75

0.3 30.58
1025 2351
| 02 1814
0.15 B 14.48
0.1 1097
0.05 |l 5.07

oo

Figure 5: Example 3. Plot of the maximum 1-norm of £*, where x* is an equilibrium
point of the system (5), for a sequence of signed networks with increasing frustration.
The values of n —2¢(Gg) are shown as dashed lines.
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—— Example 4

When 7 > 79, Theorem 2(iii) proves that the system (5) admits multiple equi-
librium points. Through numerical simulations it is possible to see that some of
these equilibria may be stable. In Fig. 6 the multistability for the system (5) is
highlighted as we depict the evolution of the first component of z(¢) for 50 random
initial conditions and m =4 > my = 1.995. The same signed network as case (c) in
Fig. 4 and Table 1 is used.

z1(t)
&&h#ogj»—twwm

Figure 6: Example 4. Evolution of state variable z(¢) for 50 random initial condi-
tions and 7 = 4. The signed network considered in this example corresponds to the
one used to obtain Fig. 4c (my = 1.995).

—— Example 5
Consider the system (5) where each nonlinear function ¥;(-), ¢ = 1,...,n, satisfies
the properties (A.1)+(A.4). Moreover, assume that

Yi(e) =j(e) =1 Yule), Vi,j=1,...,n, e € R (identical nonlinearities). (A.5)

Notice that under these assumptions Py (z) = 1»(Px) for all signed permutation
matrices P.
Let n =3 and the adjacency matrix of the network be

0 -1 -1
A=|-1 0 —1|=1-117,
-1 -1 0

which implies that the signed graph described by A is structurally unbalanced and
that the smallest eigenvalue of the normalized signed Laplacian £, A1(L), is not
simple (the spectrum of £ is A(L) = {3,3,2}). This represents an interesting
case for our analysis since the (algebraic and geometric) multiplicity of the small-
est eigenvalue of £ is 2, hence we cannot straightforwardly apply Theorem 2(ii).
However, in this case the equilibria of the system (5) for 7 > m = % =2 can

be computed explicitly.
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| origin ¢ £Pzj ¢ P}

Figure 7: Example 5. (a): «, 3,7 as functions of . (b): Equilibria of the system (5)
as described by (14), for = 2.001,2.002,...,4: the origin (black dot), =Pz} (blue
branches) and £Pz5 (red branches).

Under assumption (A.5), let 7 > 2 and a(n),3(mw) > 0,7(7) < 0 be such that

o Py () :g By v = —mu(B)
’ 7 ¢u(ﬁ)+%6+wu<7) =0,

« ™
see also Fig. 7a. Then 2] = o1, —-1,0]T, s = [8,8,7]T are equilibria of (5). Indeed

* x] ™ ¢ (Oé) * *
TH(27) = Wl/Ju(a)HEl = §UT 1=171;
7 [u(B)+¢u(y) B
RH(5) =~ |6u(8) +0u(1) | = | 8] =3
2¢u(B) g
Let ®(z,7) = —z +wHy(z). Under assumption (A.1), ®(x,7) is odd. Moreover,
since PHPT = H for all permutation matrices P € R3*3, it holds that

PO (z,m) =D (Px,m) VP ES;s,

that is, @ (z,7) is Sg-equivariant (S3 indicates the symmetric group of order 3, i.e.,
the group of all permutations of a three-element set). Hence if x(¢) is a solution
of (5), then £Pxz(t), P € S3, is also a solution of (5) [32].

To conclude, the equilibria of (5) can be written as

+ Pz}, +Pz5 VPEeESs. (14)

Figure 7b shows the equilibrium points of the system (5), where the nonlinear
function v, is the hyperbolic tangent v, (¢) = tanh(e), as 7 increases.
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Figure 8: Example 6. Trajectories of the discrete-time system (8) with ¢ = 0.3
(top panels) vs trajectories of the continuous-time system (5) (bottom panels) for

different values of 7. (a): Network G, m1 <y 4. (b): Network Go, m1 > my 4.

—— Example 6

This last example wants to illustrate the results of Theorem 4 for the discrete-time
system (8) and compare them with the results of Theorem 2 for the continuous-
time system (5). We consider two structurally unbalanced networks (G1 and Go)
with n = 6 agents in which the edge weights are drawn from a uniform distribution
and p = 0.9 is the edge probability. The network G; is such that 1 < m; =1.53 <
1.89 = my 4 while the network G is such that 1 <m g = 1.40 < 1.63 = 71, where

w1 and 7y g are defined in (12) and (13), respectively.
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Figure 8 plots the trajectories of the discrete-time system (8) with e = 0.3 (top
panels) and the trajectories of the continuous-time system (5) (bottom panels) for
different values of 7 and the same initial condition z(0) =[-1.51,1.81,—0.12,1.23,
0.49,0.91]T: in Fig. 8a we consider the network G, while in Fig. 8b the network
Ga. When 11 < 7 4 (see Fig. 8a), we expect the trajectories of both the discrete-
and continuous-time system to converge to the origin for all values of 7 less than
71 (see left panels) and to converge to a nontrivial equilibrium point for values of
7 greater than (and in a neighborhood of) 7 (see right panels). When 71 > 7 4
(see Fig. 8b), we expect the trajectories of both the discrete- and continuous-
time system to converge to the origin for all values of 7 less than 7y 4 (see left
panels). However, when 7 € (7 4,71) (see middle panels), while the trajectories
of continuous-time system still converge to the origin, the discrete-time system
admits a periodic solution. Finally, for both the discrete- and continuous-time
system to admit a nontrivial equilibrium point 7 needs to be greater than 71 (see
right panels).

7 Conclusions

In this work we have extended the analysis of a decision-making process in a com-
munity of agents, described by the nonlinear interconnected model introduced in
[3, 20], to the case in which the signed network representing the group of agents is
not structurally balanced. We provided necessary and sufficient conditions for the
existence (and stability) of equilibrium points of the system showing that, quali-
tatively, the bifurcation behavior of the system does not change when we assume
that it is not monotone, i.e., that the signed social network is not structurally bal-
anced. What changes, however, is the threshold at which the bifurcation occurs.
In particular, we have shown in the paper that this bifurcation threshold grows
with the frustration of the signed network.

Given the interpretation of the bifurcation parameter as “social effort” of the
network of agents, from a sociological point of view, this behavior is reasonable
and plausible: the more “disorder” (i.e., frustration) a social network contains, the
more difficult it is for its actors to achieve a common decision.

Appendix

A Technical preliminaries

In this section we introduce definitions and technical theorems and lemmas from
linear algebra that will be necessary in order to prove the main results of this
work.

Definition 1 ([35, 36]). A matrix A € R™*" is (diagonally) symmetrizable if
DA is symmetric for some diagonal matrix D with positive diagonal entries. The
matrices DA and D are called symmetrization and symmetrizer of A, respectively.
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Theorem 5 (Ostrowski, 4.5.9 in [27]). Let A,S € R™™" with A symmetric
and S nonsingular. Let the eigenvalues of A, SAST and SST be arranged in
nondecreasing order. For each k= 1,...,n, there exists a positive real number 0y,
such that A\1(SST) < 0p < A (SST) and A\, (SAST) = O\ (A).

The following lemma results from Theorem 5.

Lemma 5. Let B € R"™" be symmetrizable, and S = diag{si1,...,sn} € R™*"
be a positive definite diagonal matrix. Let the eigenvalues of B, BS, SB and

S%BS% be arranged in nondecreasing order. Then, for all k € {1,...,n}, it holds
that 30y, € [min;{s;}, max;{s;}| such that

Me(BS) = \e(SB) = M, (S2BS?Z) = 04\ (B).

Proof. The matrix B is symmetrizable, hence there exist a diagonal positive
definite matrix D € R™*™ and a symmetric matrix A € R™*™ such that B = DA.
Define the symmetric matrix

Byym = D2AD2 =D 3BD? ~ B

which, from similarity, has the same eigenvalues of B. Notice that, with S diagonal
1 1
positive definite, the products BS, SB and S2 BS?2 are similar matrices,

1 1,1 11 11
BS=5""(SB)S~SB and BS=S52(52BS2)S2 ~S52BS2,
which implies that they have the same eigenvalues. Moreover,
1 1 11 1 1 11 1 1 1 1
S2BS2 =82D2Bgy, D”2852 = D2(S2 BgyS2)D ™2 ~ 52 Bgy, S2,

1 1 1 1
which implies that S2BS2 and S2BgymS2 have the same eigenvalues. Since
S 3 BsymS Jisa symmetric matrix, with .S 3 diagonal and nonsingular, it is possible
to apply Theorem 5. For all k € {1,...,n} there is a positive real number 0}, €
[min;{s;},max;{s;}] such that

Ae(S% BoymS2) = 04\ (Beym).-

Therefore, from similarity, it follows that for all k € {1,...,n} there exists a ; €
[min;{s;},max;{s;}] such that

Me(S2BS2) = A\p(SB) = M\y(BS) = O3 M (B). O

B Proof of Theorem 2

To improve readability, the proof of Theorem 2 is divided as follows: in Section B.1
we prove (i); in Sections B.2 and B.3, B.4 we prove the existence (ii.1), stability
(ii.2) and uniqueness (ii.3) part, respectively, of (ii). The proof of (iii) is omitted
since it is identical to the proof of (ii.1).
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B.1 Proof of Theorem 2(i)

The condition for the existence of a unique equilibrium point for the system (5)
can be rewritten in terms of the biggest eigenvalue of the normalized interaction
matrix H =A~1A =1 — L. Define the following symmetric matrix:

Hypm = A"2AA"2 = A2HA"2 ~ H, (15)
By construction, H and Hgym have the same eigenvalues.
Proof. First, notice that since A\;j(£) =1 — Ap—j+1(H) for all i =1,...,n, then
1

_ 1 _
= TN T A ()
Let V : R"™ — R, be the Lyapunov function described by

=3 / e (16)

110

Since each function v;(-) is monotonically increasing and ;(s) = 0 if and only if
s =0, then V(z) > 0 for all x € R"\ {0} and V(0) = 0. Moreover, V(z) is radially
unbounded. From the assumptions (A.1), (A.2) and (A.4), we know that

> i(xi), if x; >0 (ie., Pi(x;) >0)
T8 < 1#2(%1), if z; <0 (i.e., z/Jz(xZ) < 0)
—0, if ;= 0,

i.e., (x)T Az > (x)T Ay(x) > 0 since = = 0. Hence, computing the derivative of
V' along the trajectories gives

V(z) = ¢(2)Td = (2) [-Ax + m Ay (x)]
= (@) Az +(2) A (r Hegmn) A% ()
< —p(2)TAZ(I - WHsym)AT(/J(
< (1= 7)o@ du()

ym)
)

Since 7 < 71, then V(x) < 0 for all 2 #0, i.e., the origin is globally asymptotically
stable, hence the unique equilibrium point for the system (5). O

B.2 Proof of Theorem 2(ii.1): existence

Since A1(£) = 1 — A\, (H), the condition on 7 can be rewritten as © > m =
#1(5) = ﬁ The proof follows [37, Chapter 1§3]. The equilibrium points

of the system (5) are solution of
D(z,m)=—x+nwHy(x)=0. (17)

Let J := %%(O,M) = —I +m1 H be the Jacobian matrix at (0,71), and let v and w
be its left and right eigenvectors (such that wlv = 1), respectively, associated with
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the zero eigenvalue (notice that Ap(J) = =1+ m A, (H) = 0 by construction). By
assumption A, (H) is simple, which implies that dim(ker(J)) =1 and that we can
write ker(.J) = span{v} and range(J) = (ker(J7))* = (span{w})*. Let E denote
the projection of R™ onto range(J), E = I —vwT, and I — F = vw’ the projection
onto ker(J). The system of equations (17) can be expanded as follows
E®(z,m)=0 (18a)
(I-E)D(z,m)=0. (18b)
Split the vector x accordingly, = yv+r with y € R, yv € ker(J) and r € range(.J

)-
From the implicit function theorem, solving (18a) for r gives r = R(yv,n), which
we can substitute in (18b) obtaining

0=(I-E)D(yv+ R(yv,n),7)=(I—FE) (—yv — R(yv,m) + mHp(yv + R(yv,ﬂ))).
Defining the center manifold g : R x R — R by
9(y) = w" (I = E)®(yv + R(yv,7),7)

we obtain that the zeros of g are in one-to-one correspondence with the solutions
of ®(z,m) =0. We say that the system (5) undergoes a pitchfork bifurcation at
(0,71) if

9=9y=0yy =9 =0, Gyyy <0, gay >0,
where the subscript indicates partial derivative.

In what follows we will use the following notation: ‘327%’ (z) := diag{ 882;/%1 (z1),...,

e (zn)}, da—w(x) := diag 85;%1 (z1),.-- O (zn)}. Moreover, as @ (z,7) is an
1

o2 Ox3 s

odd function of x, we can neglect R(-) [37, p. 33]. Calculations yield

D(0,7m1) =0 (19a)
cpy(o,m)( I+ ng( )> — (I +mH)w=0 (19b)
z (0,71)
v (9 2o 1
Dy (0,m1) = ( H ax(ax( )v)) (Om)v—mH pe - (0) UEZ =0 (19¢)
D (0,71) = Hip(0) = 0 (194)
3
Dyyy (0,71) = ( Haw((w( (z )v) v)) v=m H63¢(0) U'l (19e¢)
yyy L = Oz \ 0z \ Oz (0.m1) — M g3 1;3
Dy (0,711) = gw( | v=Ho= \(H)w (19¢£)
€T (0,71)

where (0) =0, %(0) =TI and %(O) = 0 directly follow from assumptions (A.1),
(A.2) and (A.4). Equations (19a), (19b), (19¢) and (19d) yield respectively

g(oaﬂl) = 07 gy(oﬂTl) = 07 gyy(077T1) = 07 gW(O77T1) = O
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The last two derivatives are given by

Gy (0,71) = Ao (H)wl v = N\ (H) > 0

and
3
vy n
P . PP
Gyyy(0,m1) = mw’ H @(0) :3 =71 A (H) é 1 w;v} 53 (0)<0
Uy, =

The last inequality holds since m1 A\ (H) = 1, w;v; > 0 Vi and ’?;;@1 (0) < 0 V4, which

follows from assumption (A.4). We have shown that (0,71) is a pitchfork bifur-
cation point for the system (5) and, as a consequence, that two new (nontrivial)
equilibrium branches are created. O

B.3 Proof of Theorem 2(ii.2): stability

Before stating the proof we show that, when 7 € (71, 72), all the nontrivial equilib-
rium points x* = 0 of the system (5) (if present) are locally asymptotically stable.
This lemma will be used in the proof of both the stability and uniqueness part
of Theorem 2(ii). Moreover, notice that the threshold values 7 and 7y can be

rewritten as follows:
1 1

M(H) T Nli(H)

T =

Lemma 6. Under the assumptions of Theorem 2(ii), when m € (mwy,m3), if 2* 20
is a (nontrivial) equilibrium point of the system (5) then it is locally asymptotically
stable.

Proof. Let 2* #0 be an equilibrium point for the system (5),
¥ =mwHy(z"). (20)

To prove that x* is locally asymptotically stable, consider the linearization around
x*,
0
i=A(-T+7H 61/’

T

(#%)) (@~ ). (21)

The equilibrium point x* is asymptotically stable for the system (21), and con-
sequently locally asymptotically stable for the system (5), if the matrix A(fI +

’ﬂ'H%ﬁ(l‘*)) is Hurwitz stable, i.e., its eigenvalues are strictly negative. Since A is
diagonal and positive definite, this holds if and only if the matrix —I +7H g—;ﬁ(x*)
is Hurwitz stable. The following proof shows that the largest eigenvalue of —I +
WH%(:U*) is strictly smaller than 0, i.e., that wA, (Hg—f(x*)) < 1. It is a two-
steps proof, showing first that 7\, (H g—g(az*)) <1 and then by contradiction that
TAn (Hg—f(:c*)) z 1.
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Step 1. From the assumptions (A.1), (A.2) and (A.4), for all i =1,...,n it holds
that

* * o, * * *
xi>w(xi)>81£i(xz)xi7 if 27 >0
vr<p(ay) < Gy, ifaf <0

oY, _ _
zf =(zf) =0, sz‘ (xf) =1, ifaf=

Therefore, 3 E(z*) = diag{&1(z7),...,&n(z))} € R™*™ such that, Vi=1,...,n,

() =1, &(a}) G2 (x7)

This can be rewritten in compact form as

{«fi(m;‘)>1, 0< &(xr) gﬁi(x;)a, if 2 20
1

oY

) =E(z * 22
Y") =2) 5L )2, (22
where 5
diag{E(«*)} > 1, 0<diag{E(z* 81/)( <. (23)
To simplify the notation, we will neglect the dependence from z* in what follows;

moreover, we define ¥, := %)( *). From (20) and (22), it follows that

= (nH- VY, -B)z*, (24)

that is, (1,2*) is an eigenpair of mH W, E. Therefore, by Lemma 5 with B =wH
and S = \W,;E, and by (23), it follows that for all k € {1,...,n}, 36; € (0,1] such
that A\ (mH W, B) = O\, (H). In particular 36,,0,—1 € (0,1] such that

M (THW, E) = 0 mAn(H), (25)
A1 (MTHYLE) =0p_ 171 (H) <01 <1, (26)

where mAn—1(H) = 7 <1 under the assumption 7 € (71, 72). Then, (24) and (26)
yield 1 =\, (mtHW, E).

Applying again Lemma 5 with B = tHW¥, and S = E, there exists a 0 €
[min;{&; }, max;{&;}] such that

1=M(THYE) =0n )y (HY;) > A (HY,) >0,

since & > 1 for all ¢ implies § > 1. Hence, A, (H¥;) < 1.
Step 2. Suppose by contradiction that 7, (HW,) = 1. First, we need to define
the “symmetric versions” of the matrices H\W, and HWV, E.

= (W) 2 Hoymn (¥, 2
~ (A\yx)—%.((\pz)%]{sym( z)%) (AW,)2

= (AT HeyA2) W, = H,

[H Wy ]

sym
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with Hgyn, defined in (15), and

[HY,Z]

sym =

1
Moreover, [HWE] = EZ [HY,] & 2 by construction. From similarity, 1 =

TAn([HWzgyr)- Let v be the right eigenvector of m[HW, ], associated with its
largest eigenvalue 7An ([HWyl,,) = 1. From (24), since (1,27) is an eigenpair
of tHW, E (with 1 being the largest eigenvalue, as proven previously), it follows
that (1,(AY, E)%x*) is an eigenpair of 7 [HW,E],
eigenvalue). To summarize

(with 1 being the largest

sym

- —1 —_L
[H\an]sym =82 [HWegym E7;
TA([HWs]gy) =1 and  w[HW] 0 =0 (27)
1 1
T ([HY, E]Sym) =1 and W[H\IJZE]Sym (AY, E) 22" = (AW, E)22*
Applying Rayleigh’s Theorem [27, Thm 4.2.2] with w[HW,E],,,, one obtains
T HY,E, . v
— = sym
1= WAn([H‘PI_,}Sym) =7 123,5(#
—1 —1
(yT =2 ) [H\pz]sym (:‘ 2 y)
=7 max T
y=0 Yy y
| with y=E"3v=0
[H\P ]sym ’UTU
> 7'(' TE 1y = JTE 1y (28)
The inequality v7v < vTE~1v, which can be rewritten as
IR W EDIETD 9 2
i=1 =1 ig=1 ig>1 "
holds, as equality, if and only if
v, =0 Vi st. &>1 (& zf=0). (29)

Hence, (28) can only hold as equality if (29) holds, which further implies that
E%U = v and consequently that (1,v) is an eigenpair of 7[H WV, E|
the largest eigenvalue). Indeed

sym (With 1 being

[N

1 1 1
783 [HY,),, E2v=nE2[HY], v=2

sym

Since Ap(m[HW;El,,) = 1 is simple, as shown in (25) and (26), it follows
that v should be equivalent to the corresponding right eigenvector of w[H\W,E]

[H\Ilzu]sym v =".

sym”’
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ie., (AW, E)%x* This however yields a contradiction, since by (29) vT2* =0 (in
particular v; =0 for all 27 # 0 and v; = 0 for at least one ¢ s.t. z] =0).

To conclude, A, (H¥;) < 1 and the matrix —I—|—7TH%’(JC*) is Hurwitz stable,
which implies that the nontrivial equilibrium point z* is locally asymptotically
stable. O

Finally, we are ready to prove Theorem 2(ii.2): stability.

Proof of Theorem 2(ii.2). The linearized system around the origin is & =
A(—I+mH)x (given assumption (A.2)), where A is positive definite and —I 4+ 7 H
has eigenvalues {mA1(H) —1,..., 7 Ay (H) —1}. When 7 > 71, the matrix —I +7H
has at least one positive eigenvalue, which proves the instability of the origin as
equilibrium point of (5).

Instead, let * # 0 be an equilibrium point of the system 5, whose existence is
shown in Theorem 2(ii.1). To prove its stability we can apply Lemma 6, which
shows that if «* = 0 is an equilibrium point of (5) then it must be locally asymp-
totically stable. O

B.4 Proof of Theorem 2(ii.3): uniqueness

Let f(x,m) = A[—z+ mH(x)]. We can divide the proof into two parts. (i) We
prove that in a neighborhood of 71 the system admits only 3 equilibria. (ii) We
prove, by contradiction, that there are no bifurcation points for 7 € (71,7m2). We
use Lemma 6 which proves that all the nontrivial equilibrium points & of the
system (5) are locally asymptotically stable, hence isolated and with each matrix
91 (z,7) Hurwitz.

(i). The existence is shown in Theorem 2(ii.1), where it is also proven that the
bifurcation is a pitchfork. This means that in a neighborhood of 71 the system (5)
admits exactly three equilibrium points: the origin and two nontrivial equilibrium
points, £x* = 0.

(ii). The necessary condition for an equilibrium point (Z,7) (where 7 €
(71,m2)) to be a bifurcation point is that the Jacobian %(i,ﬁ) = A[—I—l—ﬁHg—i’(j)]
is not invertible (i.e., there is an ¢ € {1,...,n} such that ﬁ')\l(Hg—;f(f)) =1). Sup-
pose by contradiction that, for 7 € (71,72), T is an equilibrium point of the sys-
tem (5), i.e., T = TH(Z), and a bifurcation point, i.e., 34 s.t. ﬁAi(H%(i)) =1.
However, Lemma 6 shows that if = 0 is an equilibrium point of (5) then it
must be locally asymptotically stable., i.e., ﬁAn(Hg—ﬁ(i)) < 1. Moreover, if =0,
TAn—1(H) <1 <7\, (H) for 7 € (m1,m2). Hence, & cannot be a bifurcation point.

To conclude, we know that the system (5) admits three equilibria (0, z*, —2*)
and that it cannot bifurcate further from them for values of w € (71, 72). Hence, the
only possible equilibrium points for the system are the origin and those originated
from the first bifurcation at m = my. O

C Proof of Lemma 2

It is useful to first reformulate structural balance of G (see Section 2) in terms of
the matrix Hgyy defined in (15), which is congruent to A and similar to H: G



Paper C The role of frustration in collective decision-making dynamical processes on
138 multiagent signed networks

(connected) is structurally balanced if and only if there exists a signature matrix
S = diag{s1,...,s,} with diagonal entries s; = =1 (i =1,...,n) such that SHgyn, S
is nonnegative. We are now ready to prove Lemma 2. In what follows we say that
a symmetric matrix is “special” if it has zero diagonal entries, and “elliptic” if it
has exactly one and simple positive eigenvalue. This notation is from [38], whose
results are used in the proof. Notice that both A and Hgyn, are special matrices.
Proof. Let G be structurally unbalanced.

Assume by contradiction that A2(L) > 1, which is equivalent to A\p,—1(H) =
An—1(Hsym) < 0. This means that Hgyr, is special, nonsingular and elliptic. Then,
all the off-diagonal entries of Hgym are different from zero (see [38, Corollary 2.7])
and hence there exists a diagonal (signature) matrix S = diag{si,...,sn} with s; =
+1 s.t. SHgymS is nonnegative (see [38, Thm 2.5]). Therefore, G is structurally
balanced and we obtain a contradiction.

Assume by contradiction that A2(L) = 1, which is equivalent to A\,—1(H) =
An—1(Hsym) = 0. This means that Hsym is special, singular and elliptic. Let
r= rank(HSym) < n and observe that Hgyy, cannot have zero rows or columns since
G is connected. From [38, Thm 2.9], there exist a permutation matrix P € R"*"
and an integer ¢t € {r,...,n} s.t.

PHgy PT = DHgyrn D7,

where Hgym, € R is elliptic, special and nonnegative with rank r and D =
di ©do @ ... 0 dy € R™ (here @ indicates the direct sum) is a block matrix
where each d; € R™ (with Y.!_ n; = n) is a unit vector (i.e., ||di|l2 = 1) with all
elements different from zero (i.e., |d;| > 0). Define the signature (block) matrix
S:=851@...8 5 € R where each S; := diag{sign(d;)} € R™"*" §=1,...,t,
is a signature matrix. Then, PHsymPT can be rewritten as

PHgy PT = S|D| Hyymy | D*|[S.

It follows that S (PHSymPT)S is nonnegative, and hence, that SHsymS' is non-
negative, with S = PTSP still a signature matrix. Therefore, G is structurally
balanced and we obtain a contradiction.

D Proof of Theorem 3

In the following proofs we use the notation S := diag{sign (z)} where x € R™ and
the signum function is defined as sign(y) =1 if y <0 or sign(y) = —1if y <0,
where y € R.

Remark 5. The frustration of the network G is defined in equation (2), which can be
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rewritten as follows:

2¢(G) = min 1T (|H| - sHS)1
S=diag{s1,...,5n}
Si:il Vi
=n— max 17sHS1
S=diag{s1,...,sn}
s;==%1Vi
T
=n-— max HTS(M)S]I.
S=diag{s1,...,sn} 2
Si::l:l Vi
Remark 6. Let
u* = S,+1 where Sy = argmax ILTSHSIL, (30)
S=diag{s1,...,sn }
Si::tl Vi

that is, 2¢(G) = n — 17 S« HS,«1. From the results on (symmetric) Hopfield neural
networks (see [23, 39]) we know that the vector u* satisfies u* = sign ((H+2HT)u*). If

H is symmetric, then u* = sign (HTU*), meaning that the vector Sy,«sign (HTSu* ]1) =

Syxsign (HSy+1) has all strictly positive components (equal to 1).

D.1 Proof of Theorem 3(i)

The proof can be divided into three steps. First, we show that if 2* is an equilib-
rium point of the system (5) and H is symmetric, then ||z*||1 < 7(n—2€(G)). Then,
we show that if H is not symmetric and z* is such that 2} = 0 for all ¢ (or, |z*| > 0)
we can apply the same reasoning to prove that ||z*||; < 7(n —2¢(G)). Finally, we
complete the proof and show that each equilibrium point z* of the system (5) (with-
out assuming that H is symmetric) satisfies the inequality ||z*[|; < 7(n — 2¢(G)).
Step 1. We first consider the particular case of the matrix H = A~'A being
symmetric, that is, A = 1. Let z* be an equilibrium point of the system (5), that
is, * = wH(x*) and let S+ be its signature, i.e., |[x*| = Sp=a*. It follows that

|27 = 7 Spe HY (") = m [H (") | = 7 Spx H S [1h(27)].
Observe that Spy(p) = Szx = Sy(e+)- Then

* T,..%
Wl B g g ) =17 S S ()

and

max =y = max 1T|Hy@")|< max 17 | Hul.
r*ER"s.t. 7T z*ER"s.t. uER™s.t.
z*=mHy(z*) z*=mHy(z*) SHu=Su, —1<u<l
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because the constraint x* = wH(z*) (i.e., * is an equilibrium point) implies the
constraint SH'zp(ac*) = S¢($*)’ and |¢;(z;)] <1V z; € R. Then

*
max a1} < max 17 | Hu|
z*eR"s.t. 7T u€ER™s.t.
r*=mHy(z*) SHu=5Su, —1<u<l

= max 118, HS, |ul (31a)
ueR? s.t. —1<u<l

= max 178, HS,1 (31b)
Su:diag{su,la---ysu,n}

Sy,i=x1Vi
=n—2¢(G).

Notice that 178, HS,, |u| < |11TSuHSu| 1 for all uw € R" s.t. |u| <1. The equality
between (31a) and (31b) means that the maxima are obtained when w lies in the
corners of the hypercube |u| <1 (i.e., |u| = 1). In particular, u* defined in (30) is a
solution of this maximization problem since it is feasible and sign (]lTSu* H Su*) =
sign (]lTSu* H) Sy =17 >0, meaning that 17 Sy« HS,» = |]lTSu* HSy» |

Step 2. Let 2* be an equilibrium point of the system (5) and assume that «} =0
for all 4. In this step we do not assume the symmetry of the matrix H. Following
the reasoning of Step 1, and by adding the additional constraint |u| > 0 (which
comes from z # 0 for all 7), it is still possible to prove (see below) that the maxima
are obtained when w lies in the corners of the hypercube |u| <1 (which yields the
equivalence between (31a) and (31b)). This is equivalent to show that the maxima
are obtained when wu is s.t. 175, HS, > 0. Let

U= argmax 175,HS, |ul
ueR™ s.t. —1<u<1,|ul>0

and vT =17S;HS;. Suppose, by contradiction, that 37 s.t. vj <0 (and @; # 0,
since |@| > 0). Define @ s.t. Sz = Sg and

_ 1, if’UjZO
as] = ela;|, ifv; <0
g1 J

with 0 <& <1 (which means that |a| <1 and |u| > 0, i.e., u is a feasible point of
the maximization problem). Then

17 H Sy lul =v" [al = > vlug[+ > vjla]
Jiw;>0 1:0; <0

Z vj + Z vjelﬂj’

Jiwj>0 Jiv;<0

> 3 vl + Y vselay]

Jw; >0 Jw;i<0

> Y vilal+ Y vla|=1"SaHSalal,
Jwj>0 1:0;<0
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which implies a contradiction.

Step 3. Finally, we want to extend the idea presented in the previous steps to
show, without imposing any constraint on H or z* (except for being an equilibrium
point of (5)), that ||z*||; < m(n—2¢(G)). In this case, assume that 27 = 0 for some
i: let mg (resp., n —ng) be the number of zero (resp., nonzero) components of

*

z; and let P be a permutation matrix s.t. Pz* = xgz , where zy_, € R0
*

and |z} ,| > 0. Let Py(z*) = V(%”Z)] and PHPT = H:Z : . Then, ||z*|1 =

|zt 1, =), = mHp2(2),) and (following the reasoning of Step 2)

Sk
[l |1 T
—< . Inax ]ln_nOSnZanSnz]ln—no-
m Snz=diag{s1,...,Sn—nq }
Si::tl Vi
Notice that for all signature matrices Sy, = diag{si,...,sp—ny} € R"70X"7"0

with s; = £1 Vi, the following inequality holds:
17 SnzHnzSnz1
n—no nz nz~nz-+-n—no

= (1., on)P)- (P {ng ISJ P)-mr. (P {ng ISJ P)-(PT [“g;:o])

< max ul Hu=n —2¢(G).
u€R™ s.t. |u|<1

Summarizing, we have shown that ||2*||; < m(n — 2¢(G)). O

D.2 Proof of Theorem 3(ii)

From Theorem 3(i) we know that the set
Qqg) ={z € R": ||z]ls <m(n—2¢(G))}

contains all equilibria of the system (5). We now want to prove that Qg is
attractive when the signed normalized Laplacian £ or, equivalently, the normalized
interaction matrix H = A~ A =T — £, is symmetric (i.e., A = §I).

Let V :R™ — R4 be the Lyapunov function described by

Vi)~ (3l =7 =2c@). weQg )
0, x e Qe(g) .

Since A is positive definite then V(z) > 0 for all z € Qg). Moreover, V(z) is
radially unbounded. Let S; := diag{sign(z)} (observe that Sy = Sy(,)). The



Paper C The role of frustration in collective decision-making dynamical processes on
142 multiagent signed networks

upper Dini derivative of V along the trajectories (5) (with A =461I) gives
V(x+sz)—V(x)

d*V(z) = limsup

s—0t s
= 1limsup 2ilvit il = |l
s—0t $

n
- ;;dﬂm - ;;signm)ri
=1TA71S, 0 =178, [~z 4+ TH(z)]
= — |l + 717 S Hyp(x)
= — |||y + 71T S HS, [v(x)|,

< —||zl+ max 17S, Hu
uweR™ s.t. |u|<1

Again, the intuition is that 17'S, Hu = 175, Sy, |Hu| < 17 |Hu|, which means
that the maxima of 17S, Hu are obtained when Sp,, = S,. Hence, following the
reasoning of the proof of Theorem 3, we conclude that for all z & Qg

dtV(z) < —||lz|1 +7(n —2¢(G)) < 0. O

E Proof of Proposition 1

To show that the bound (6) holds, observe first that 1 < m; < mo holds trivially
since 7%1 =1-M(L)<land m = 1_)\11(5) < 1_)\12([3) = mo. Therefore, it remains
to show that m < #g(g) It is easier to write the rest of the proof in terms of

the normalized interaction matrix H = I — £ = A~'A; then, m = ﬁ = ﬁ
Let Spest be the matrix yielding the minimum value of energy in (2), that is,
26(G) =n — 1T Spegt HSpesi 1 (Remark 5 in the proof of Theorem 3 shows how the
frustration of the network G can be rewritten in terms of H). Since £ is symmetric
then H is also symmetric and using the Rayleigh’s Theorem [27, Thm 4.2.2], it

follows that

1 A (H) = max v Hu S 17 Sy st H Spest 1 _n- 2¢(9)
T " veRn pTy = 171 n ’
which implies (6). O

F Proof of Proposition 2

The first part of the proof holds for both structurally balanced and structurally
unbalanced (connected) graphs G with normalized signed Laplacian L.

The condition m; ¢ > m; holds if at 71 the biggest eigenvalue of Ly, is smaller
than 2, that is, Ay(Lr,) < 2 = Ay(Lnr, ;). Since L, = A(I —my (I — £)), from
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Lemma 5 it follows that 360 € [min,- d;,max; (51-] such that
M (L) =0A(I —m1(I— L)) =0(1 —m1(1 — A (L))).

Let emax; §; < 1. Observe that the smallest and largest eigenvalues of £ always
satisfy A1 (L) <1< A (L) <2 (see, e.g., [25]). Then 1 — A, (L) <0 and

A (L) =01 +m1 (M (L) —1))
< masGi(1+ 1 (An(£) = 1) < (1471 (n(£) = 1).

Therefore, showing that 1 (A, (L) —1) <1 is sufficient to conclude that Ay (Lr, ) <
% and hence that 7 4 > m1. We now need to treat the cases (i) and (ii) separately.

Assume that (i) holds, i.e., A1(£) = 0. Then, since A\, (L) <2, m (A (L) —1) =
(L) —1<1.

Assume that (ii) holds, i.e., A\1(£) < 2 — Ap(L). Then, 71 (A (L) —1) <71 (1—
M(L)) =1.

Hence, the condition 7y 4 > w1 holds. O

G Proof of Lemma 3 and Lemma 4

Proof of Lemma 3. Assume, by contradiction, that 7 < m; which implies that
L is positive semidefinite (positive definite if 7 < 71), see Remark 3. Let 2* # 0 be
an equilibrium point of (8), that is, Ax™ = 1Ay (2*) = AY(2*) — Lyp(2*). Then,

0 < (@) TA(* —p(z*) = (=) Lyy(z*) <0,

which leads to a contradiction. Hence, m > 7. O
Proof of Lemma 4. Assume, by contradiction, that m < 7y 4 which implies that
€L — 2I is negative semidefinite (negative definite if 7 < 7 4), see Remark 3.
Assume that the system (8) admits a period-2 limit cycle: 3 K > 0 such that
T4 = =0 for all k> K, that is

rp = (I —eA)wpi1 +emAYP(Tpy1)
Tpy1 = (I —eA)xy, +emAY(zy),
which implies that
0= (21 —eA)(zp+1 — xk) +emA(P(Tt1) — Y (k).
Then,
0= (P(@ps1) —(ax) " (2] — eA) (@py1 — 1)
+em(Y(Tpy1) — ﬂfk)) A(p(zpg1) — Y (2k))

(
o(
> (Y(@psr) = (xp)T (21 — b +emA) (W(zpsn) —v(ap)
= ((@r1) = O(an) T (2] — L) (W (2p11) —¥(xr)) 2 0
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which leads to a contradiction since ¥(xy41) =1 () # 0. Hence, m > 71 4. Observe
that the first inequality holds since e max; d; < 2 and each nonlinearity is monotoni-
cally increasing (i.e., if z;(k+1) —xz;(k) > 0 then ¢ (x;(k+1)) —i(z:(k)) > 0 for all
i) and Lipschitz with constant 1 (i.e., |z;(k4+1)—xz; (k)| > |vi(zi(k+1)) — 1 (i (k)]
for all 7). O

H Proof of Theorem 4

To improve readability, the proof of Theorem 4 is divided as follows: in Section H.1
we prove (i) and in Section H.2 we prove (ii).

H.1 Proof of Theorem 4(i)

It is useful to first introduce the following two lemmas.

Lemma 7. Consider the function f:[—1,1] — R defined as
i 1
f0) = [ v (s)ds = 502,
0

where ¢ : R — [—1,1] is a nonlinear function satisfying the properties (A.1)+(A.4)
and )1 indicates the inverse function. Then, f(y) >0 for all y # 0 and f(0) = 0.

Proof. Form the definition of f it follows that f(0) =0 and f'(y) = v~ (y) — v.
Since f/(0) =0, a sufficient condition for f(y) > 0 to hold for all y = 0 is that f is
a convex function. To prove that f is convex we compute the second derivative:

"W =F1m " <o, y=0

1 _1{>1—1=0, y#0

since 0 < 9'(y) < 1 Vy =0 and +'(0) = 1. It follows that f is convex, which implies
that f(y) >0Vye[-1,1]. O
Lemma 8 (Taylor expansion). Consider the function g : [-1,1] — R4 given
by g(y) = foyd;_l(s)ds, where 1) : R — [—1,1] is a nonlinear function satisfying the
properties (A.1)=(A.4). Expanding g around yg yields

Yy Yo _ 9
[os= [ s+ - o)+ L0
0 0

where z € [yo,y] and ¢’ (z2) := m >1.

Now we are ready to prove Theorem 4(i); the proof follows the work [29].
Proof. Let vy ; = ¥;(2;(k)), i = 1,...,n, and ¢), = [g1 ... Pg,|T. Then sys-
tem (8) can be rewritten (using 1y instead of zj as state variable) as:

O (Wpg1) = (I — €M) (Wg) + em Any,. (33)
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Let V:[—1,1]"—= R4 be the Lyapunov function described by
Vi,

V(o) = gt A= 306 [ 076,
@ 0

Observe that from Lemma 7, V (¢y,) > 0 for all ¢, € [—1,1]™\{0} and that V(0) = 0.
Indeed,

1 0;
V(yy) > —iﬂfwkTAwk + Ezi: 5%,1‘2 = %WT(A — A = gi/)kTLw% >0.

Let Yo = Y41 — Y. Computing the increment of V' along the trajectories gives

Va=V(@rs1) = V()

Vht1,i Vi
=~ (Wrn T A — " Av) e 30 / Wi (s)ds — / o7 (s)ds)
g 0 0
1
= *§¢AT(7T5A)1/)A - ZwA,i(mZaij?/Jk,j)
i J
Vht1,i YVi11,i

S [ty [ o (34)
i Vi i Vi

From (33),

D vai(med aptrg) =Y Aty (Yksrs) — Y tai(l —6) vy (k).
i j i i

Lemma 8 with y =11 ; and yo = vy, ; yields

Yht1,i 9
-1 1 wA,i
[ ot s =m0 ) + A o), (3)
Vi
where da(z;) := m > 1 and z; € Vg, Yk41,4]- While, with yo =1p41, and
Y =P, it yieldsz '
Yht1,i 9
—1 -1 (I
[0 6 = v W) — A daly) (36)
Vi

where da(y;) := > 1 and y; € [Yg i, ¢r+1,4]. Substituting (35), (35) and

1
ACID))
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(36) in (34), one obtains

Va= _%¢AT(7T5AW}A - Z¢A,¢¢;1(¢k+l,i) + Z(l —e8:)Pait;  (Vr)

2
%2’1 da(zi)

- Z(l —e0i)hn it (Yng) — Z(l —&6;)

2
+ Z%,M{l(?ﬁmu) - Z %T’l da(yi)
Pa it
2

< —%¢AT(75A)¢A - (2—¢d)

1 1
= iwAT(—ﬂ—i—sA —meA)Yp = iwAT(—ﬂHL,T)«/;A.

The inequality holds since 1 —ed; > 0, da(z;) > 1, and da(y;) > 1 for all &. Under
the assumption that —2I + L, is negative definite, we obtain Vi < 0 if 15 # 0.
Therefore the trajectories of the system (8) converge asymptotically to a fixed
equilibrium point which must be the origin (see Lemma 3). O

H.2 Proof of Theorem 4(ii)

In this proof we follow [28, Chapter 5] and [40]. The system (8) can be rewritten
as
Tpp1 = Jrxp + F(xg) (37)

where Jr =I—eL, and F(zy) = me A(—xr+1¢(x)). The proof is divided into two
steps. First, we assume that 71 < 7 4 and prove that the system (37) undergoes
a pitchfork bifurcation at m = m;. Then, we assume that m; 4 < 71 and prove that
the system (37) undergoes a period-doubling bifurcation at 7 =7 4.

Step 1. Assume that m < 7 4. At m = w1, J; has a simple eigenvalue at
+1 and the corresponding eigenspace span{q} has dimension one, where ¢ is the
eigenvector of Jr, associated with 1 (i.e., Jr, ¢ = ¢) normalized such that ||g|2 = 1.
Since Jr, is symmetric, the left eigenvector of Jr, is also ¢ (i.e., qTJ7r1 = q7).
We can decompose any vector € R" as ¢ = ug+y where v = ¢’z and y =
z—(¢Tx)q € (span{q})’. The system of equations (37) in the coordinates (us,yx)
can be written as follows

g1 = ug +q° Fupg+y) (38a)
Yer1 = Jryk + F(urg +yi) — (7 Flurg +yi)) - (38b)

Center manifold theory (see [28, Chapter 5.4.2]) demonstrates that the restriction
of (38) to the center manifold takes the form

Ugt1 :uk—l—bu%-i-cu%—kO(ui), (39)

where, under the assumption (A.1), the parameters b and ¢ in (39) simplify to

1 1
b:= iqTFyy(Oaﬂ'l)v c:= EQTFyyy(OaW1)~
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. 2 2 A 3

Let 2% (z) := diag{ 24 (21),.. ,f’aj (n)} and 2% (z) := diag{ 24 (21),...
3 1 1
0‘%( »)}. Then

2
a1
1 mTE 32'(/J
b=-q¢"F, =—q"A— | =
2‘] yy(oﬂrl) B q 022 (0) 3 0
an
since %2;21 (0) =0 for all <. Moreover,
3
7
L7 e p 0% .
c=54 Fyyy(0,m) = 54 Aa—( )|
3
dn
a
_ema Pl | | 2 e85, 8% )8
= 6q Aaxg (0) o Z(sz 023 (0)g; <0,
q731 i=1 ?

since LY (0) < 0 for all 4. Hence, (39) can be rewritten as
3:70?

Upp1 = ug — |clui + O(up) (40)

which means that at 7 = m the system (8) undergoes a pitchfork bifurcation.
Step 2. Assume that m3 > m 4. At @ = w4, Jr has a simple eigenvalue at
—1 and the corresponding eigenspace span{q} has dimension one, where ¢ is the
eigenvector of Jr, , associated with —1 (i.e., Jr, ;¢ = ¢) normalized such that
llgll2 = 1. We can decompose any vector = € R" as x = uq +vy where u = ¢’ x and
y = — (¢Tx)q € (span{q})t. The system of equations (37) in the coordinates
(ug,yx) can be written as follows

Upy1 = —ug +q7 F(upg+yp) (41a)
Yrr1 = Jeyr + Furg +yg) — (¢ Fupg+y)) q. (41b)

Center manifold theory (see [28, Chapter 5.4.2]) demonstrates that the restriction
of (38) to the center manifold takes the form

Up 1 = —up +bui +cuy +O(ul), (42)

where, as in Step 1, since each ;(-) has odd symmetry (hence %% (0) =0 for all

i), the parameters b and ¢ in (42) are given by

1
b=q"Fyy(0,m.4) =0, c=q" Fyyy(0,m.4) > 0.
Hence, (42) can be rewritten as
g1 = —up + || u + O (up) (43)

which means that at m = m; 4 a cycle of period 2 bifurcates from the origin. O
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Abstract

In parliamentary democracies, government negotiations talks following
a general election can sometimes be a long and laborious process. In or-
der to explain this phenomenon, in this paper we use structural balance
theory to represent a multiparty parliament as a signed network, with
edge signs representing alliances and rivalries among parties. We show
that the notion of frustration, which quantifies the amount of “disorder”
encoded in the signed graph, correlates very well with the duration of
the government negotiation talks. For the 29 European countries con-
sidered in this study, the average correlation between frustration and
government negotiation talks ranges between 0.42 to 0.69, depending
on what information is included in the edges of the signed network.
Dynamical models of collective decision-making over signed networks
with varying frustration are proposed to explain this correlation.

1 Introduction

In a country adopting a multiparty parliamentary system, the process of forming
a government after a general election can be quick, or can sometimes be imper-
vious and characterized by lengthy negotiations. Indeed, especially in the last
decade, many European countries have experienced unusually long cabinet bar-
gaining phases, for instance Belgium in 2010 and 2019, Bosnia Herzegovina in
2010 and 2018, Croatia in 2015, Czech Republic in 2006, Germany in 2017, Ire-
land in 2020, Italy in 2018, North Macedonia in 2016, Netherlands in 2017, Norway
in 2017, Spain in 2016 (and 2015), Sweden in 2018 and UK in 2018. Typically,
long delays appear when a parliament is fragmented and a clear majority is miss-
ing: parties have to enter multiple bargainings with each other in order to form a
coalition able to win a parliamentary confidence vote.

To model this government formation process, descriptive statistics and game-
theoretical models of bargaining have often been used in the literature, see [2-10]
and references therein. These models use the data to fit coefficients expressing
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the relative importance of certain factors, like number of parties and Members of
Parliament (MP), seats per party, ideological polarization, etc., in predicting the
cabinet formation times.

One of the important determinants of a government formation timeline is
the fragmentation of a legislature, measured for instance in terms of the Laakso-
Taagepera effective number of parties [11] or of the related fractionalization index
[12]. This and other factors, such as the ideological diversity of a legislature, the
idea of minimum winning coalition [3], etc., can be used in descriptive statisti-
cal models to evaluate how different features influence the government formation
process [5, 7, 9]. For instance, the Cox hazard model of [5] groups factors into
“bargaining complexity” (n. of parties and seats per party, ideological polariza-
tion, requirements for the investiture, type of parliamentarism — “negative” or
“positive”, see [2]) and “uncertainty” of the political landscape (previous history
of collaborations or defeats among the parties, whether the government is a post-
electoral or an inter-electoral one, etc.) and uses empirical data to estimate the
importance of the different terms.

The literature on bargaining models applied to coalition formation is vast, see
for instance [8, 10, 13-17] (see also [18] for an overview). A typical bargaining
procedure is organized in two stages: first a player (often the formateur) proposes
a coalition of parties and a certain allocation of government portfolios among them,
then the members of the candidate coalition can decide to either accept or refuse
the proposal. A government is formed only if all the candidate parties agree on
the proposal, otherwise the bargaining process continues until a government is
formed. This model is used for instance in [19] to perform an empirical analysis in
11 parliamentary democracies, using electoral data from 1945-1997. More complex
bargaining procedures are discussed e.g. in [10].

Departing from the aforementioned literature, this paper aims to propose a
novel approach to model the process of government formation, rooted in the social
network theory of multiagent systems with antagonistic interactions [20, 21]. In
particular we represent antagonism among parties as a signed graph, and consider
the process of government formation as a collective decision-making over such
signed network.

More specifically, our approach relies on the concept of structural balance [22—
26] and of graph frustration, intended as distance from a structurally balanced
situation. The idea of structural balance is well-known in social network theory
[20, 21], and easily exemplified by notions like “the enemy of my enemy is my
friend”: when a signed graph can be partitioned into two subgroups such that all
nodes in each subgroup are connected by positive (i.e., “friendly”) edges and all
edges across the two subgroups are instead negative (i.e., “unfriendly”) then the
graph is structurally balanced and shows no frustration. A two-party parliament
(e.g., Malta, if we restrict to European nations) is structurally balanced: all cycles
on the signed graph are positive (i.e., have an even number of negative edges). For
a structurally balanced parliament, the government formation process is typically
straightforward: the party winning the elections is in charge of forming a cabinet.
Signed graphs that are not structurally balanced have instead some amount of
negative cycles (i.e., cycles with an odd number of negative edges). The notion
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of frustration can be used to quantify the distance to structural balance induced
by these negative cycles [26]. This notion, adopted from the statistical physics
literature, is expressed as the energy in the ground state of an “Ising spin glass”
[26-28] and quantifies the amount of “disorder” contained in the system.

Our hypothesis is that in parliamentary networks this disorder strongly in-
fluences the process of government formation. Namely, the higher the amount of
frustration, the longer the government negotiation phase is expected to be. Indeed
if there is no clear winner after the elections (i.e., no political party or alliance
managed to secure a majority in the parliament) then the parties have to negoti-
ate and overcome their ideological differences in order to form a coalition cabinet
backed by the majority in the parliament. The data we collected from 29 Eu-
ropean nations over the last 30-40 years show that indeed the frustration of the
parliamentary networks correlates well with the duration of the government nego-
tiations talks. This correlation is due to a large extent to the fragmentation of a
legislature. In fact, interestingly enough, we show that in the simplest scenario
we consider (referred to as scenario I below) frustration combines together the
notions of fractionalization index and minimum winning coalition.

The correlation between frustration and duration of the government negotia-
tions can be explained also at a deeper level, using dynamical models of collective
decision-making in multiagent systems [29-31]. Such models represent a decision
as the trespassing of a bifurcation threshold, and the corresponding bifurcation pa-
rameter has the interpretation of “social commitment” of the agents, i.e., intensity
of the interactions among the agents. In presence of signed graphs, it is known
that the bifurcation threshold can be pushed to higher values of the bifurcation
parameter, and in particular that its value is proportional to the frustration en-
coded in the signed network [32]. If we consider as decision a confidence vote on
a candidate cabinet, and as “social commitment” the intensity of the government
negotiation talks (quantified as duration of the bargaining phase), then in a mul-
tiagent dynamics perspective the positive correlation we find between frustration
and duration of the government negotiation phase is an expected and reasonable
property: more “disordered” parliaments require longer negotiations to form a
government. By capturing and quantifying this disorder, the frustration of a par-
liamentary network allows to predict the government formation timing and also, to
some extent, the composition of parties that managed to form a successful cabinet
coalition.

2 Results

2.1 Correlation between frustration and duration of the
government negotiation talks

In the 29 European parliamentary democracies or constitutional monarchies con-
sidered in this study, see Table 1 (and Table 2 for more details), we computed the
frustration associated to the parliamentary network resulting after each general
election (see Section 4). Its value depends on what information is encoded in the
weights of the parliamentary network: three different scenarios (denoted I to III,
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Country System of Pre-electoral Number of Elections
Government coalitions
(PR or PCM) vV =yesor X=no N (from-to)

Albania PR v 8 (1992-2017)
Andorra PCM v 8 (1993-2019)
Austria PR X 13 (1979-2019)
Belgium PCM v 7 (1995-2019)
Bosnia Herzegovina PR X 8 (1996-2018)
Bulgaria PR X 9 (1991-2017)
Croatia PR v 9 (1992-2020)
Czech Republic PR v 8 (1992-2017)
Denmark PCM X 13 (1981-2019)
Estonia PR X 8 (1992-2019)
Finland PR v 8 (1991-2019)
Germany PR v 8 (1990-2017)
Greece PR X 11 (1990-2019)
Hungary PR v 6 (1990-2010)
Iceland PR X 8 (1995-2017)
Ireland PR v 7 (1992-2020)
Italy PR v 8 (1992-2018)
Latvia PR X 9 (1993-2018)
Luxembourg PCM X 8 (1984-2018)
North Macedonia PR v 10 (1990-2020)
Moldova PR X 8 (1994-2019)
Netherlands PCM X 12 (1981-2017)
Norway PCM v 10 (1981-2017)
Serbia PR X 6 (2007-2020)
Slovakia PR v 9 (1990-2020)
Slovenia PR X 8 (1992-2018)
Spain PCM v 9 (1989-2019)
Sweden PCM v 11 (1982-2018)
United Kingdom PCM v 10 (1983-2019)

Table 1: List of countries considered in this study. For each country the following
are shown: the system of government (PR = Parliamentary Republic, PCM =
Parliamentary Constitutional Monarchy), the existence of pre-electoral coalitions,
the number of general elections considered and their time span.

see Fig. 1a) are considered in this study, from no a-priori information at all on the
parties and their relationships, to ideological and electoral coalition information.
In particular, in scenario I a parliamentary network is built using information on
(1): n. of parties of a legislature, and (2): n. of MPs per party. In scenarios IT
and III also (3): pre-electoral party coalitions, and (4): ideological polarization of
the parties are considered in forming the adjacency matrices of the parliamentary
networks. More details on these four factors are provided below, in the Section 4
(see also Fig. 1b and Fig. 8).

Even for the most basic scenario (I: the parties are “all-against-all”, which leads
to an unweighted fully-connected signed graph with on-diagonal blocks of +1 and
off-diagonal blocks of —1, see Fig. 1b), our calculations show that the frustration
of a parliamentary network is indeed a good indicator of the complexity of a post-
electoral government formation process: the average correlation (defined by the
Pearson correlation coefficient) between the frustration (¢, computed according to
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SCENARIO I 11 IIT1
Party All-against-all ~ Pre-electoral Pre-electoral
grouping coalitions coalitions
‘Weight Unweighted RILE (Optimized)
selection Left-Right grid
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A S

SIGNED GRAPH DYNAMICAL SYSTEM PARLIAMENTARY NETWORK
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pitchfork bifurcation negotiation time

=1z A ( L) election day government wins confidence vote

()

Figure 1: (a): The three different scenarios considered in this study. (b): Construct-
ing a parliamentary network and the corresponding adjacency matrix in scenario I
(all parties against all parties and weights equal to 41, in blue, and —1, in red).
Each node p; represents a political party. See Fig. 8a for scenario II and III. (c):
Process of government formation described as a dynamical model of decision-making
over signed networks: the higher is the frustration of the network, the higher is the
value of the bifurcation point 7 = #1(5) (A1(L) = least eigenvalue of the nor-
malized Laplacian of the signed graph). In turn, the higher is w1, the longer is the
expected government negotiation time between the parties.

the formula (2), see Fig. 10b) and the length of the government negotiation phase
(computed as number of days between the general election and the day the new
government is sworn in, see Fig. 10a) is 0.42, see Fig. 2a. In this scenario, what
is modeled is essentially only the fragmentation of a legislature, i.e., n. of parties
and n. of MPs per party, and in fact in this case the frustration is nearly identical
to the fractionalization index F' (correlation is 0.99, see Fig. 2d) with a very minor
correction needed only when in a country no coalition exists able to achieve exactly
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50% +1 of the seats. An analytical formula relating these quantities is provided
in Section 4.4, see also Section 3 for more details.

Given the many unmodeled factors constraining and influencing the cabinet
bargaining process (see e.g. [33, Chapter 9] for an overview) we find it remarkable
that this level of correlation can be achieved by such simple models, especially
since a clear reason behind the lack of correlation exists for several of the countries
showing the worst fit (e.g., Czech Republic, Estonia and Greece), see Section 3.

More complex adjacency matrices for our parliamentary networks can be formed
if we include information such as pre-electoral party coalitions, if available (explicit
or implicit, depending on the country, see Table 1), and ideological classification of
parties. When for the latter factor we use standard indexes such as rile (based on
the electoral manifestos of the parties, see [33-35]) then the correlation between
network frustration and negotiation days is slightly lower, with an average value of
0.32 (scenario II in Fig. 2a). When instead the edge weights are optimized based
on a predetermined left-right grid (see Fig. 8c and Section A.1 for the details)
then the correlation grows up to 0.69 in average (scenario III in Fig. 2a). In both
scenarios IT and ITI, frustration and fractionalization index no longer coincide, see
Fig. 2d. Because of the weight optimization, scenario ITI cannot be considered
parameter-free, unlike scenarios I and II. To motivate (and validate) the use of
this scenario we have performed a “leave-one-out” analysis, where the optimization
of the political positions of the parties in the left-right scale is performed only on
N —1 elections (denoted “training set”, where N is the number of elections for
each country, see Section 4.8 for more details) and the remaining election (denoted
“validation set”) is used to evaluate how well the model fits the data (in terms of
correlation). As Fig. 4 shows, scenario IIT is in general performing well in the
leave-one-out analysis. A special case this analysis, when the excluded election is
the last one, can be interpreted as the capacity of the model to predict the length
of a future negotiation process based only on the frustration of a newly elected
parliament. Also in this case the predictive power of the model is in most cases
reasonably good, see Fig. 17 and Section 3 for more details.

2.2 Prediction of the successful cabinet coalition

The notion of frustration of a parliamentary network can be used also to predict
the successful cabinet composition ensuing from the negotiations. If in our signed
graphs we assign a “spin” variable (polarized into £1 values, corresponding to
“spin up” and “spin down”, and here interpretable as yes / no in a confidence vote)
to all parties, then it is possible to compute an energy-like function for each spin
configuration, as well as for the party coalition that succeeds in forming a post-
election government. The frustration then corresponds to the global minimum of
this energy functional (i.e., the energy in the ground state, denoted Spest). The
index pgov described in Section 4.5 represents the overlap between the party coali-
tion that succeeded in forming a government, Sgov, and the majoritarian group
of parties in the ground state Spest. In our data, pgoy varies between a 68% of
scenario I and a 79% of scenario III, see Fig. 2b. It is worth remarking that for
several countries (e.g., Czech Republic, Denmark, Norway, Sweden) the overlap
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is reduced by the fact that minority governments are supported (actively or pas-
sively, e.g., through abstentions in confidence votes) by other parties which do
not figure explicitly in the cabinet coalition (and hence do not appear in the spin
configuration Sgoy We use to quantify pgov). The lower value of pgoy for scenario
I is also due to the parliamentary network being an unweighted matrix, which
leads to many states of near-identical energy, see Fig. 11. For weighted adjacency
matrices (scenario IT and IIT) such degenerate cases are much less frequent and
in fact pgov increases. Indeed, if we look at the energy gap between ground state
and “government state” (i.e., Spes; and Sgoy, see Section 4.5), expressed by the
index 7ngov described in Section 4.5, then it is 7goyv > 90% in scenario I, even better
than for the remaining scenarios (ngov = 79.2% in scenario IT and 7goy = 79.7%
in scenario ITI, see Fig. 2¢), which confirms that even when non-optimal, the suc-
cessful government coalition is always “energetically” close enough to the ground
state coalition Spest identified by our method.

2.3 Interpretation as collective decision dynamics

The high correlation between frustration and government negotiation days admits
an interpretation in terms of dynamical models of collective decision-making, see
Section 4.6, Section 4.7, and Section A.3. These models, used for instance in
[31, 32], are inspired by the behavior of animal groups [29, 30, 36] and in our case
associate a state variable to each MP, variable that represents the decision in a
confidence vote. In order for a government to win a confidence vote, an attractor
corresponding to a majority of positive decisions must be present. The government
formation process is represented in this model by means of a bifurcation occurring
for a certain value of a scalar parameter m which we can refer to as strength of the
“social commitment” among the parties, here intended as a proxy for the duration
of the cabinet negotiations process. Increasing m, the system passes from having
the origin as the only globally asymptotically stable equilibrium to a situation in
which two extra nonzero states of decision, i.e., two locally asymptotically stable
equilibria, are present, while the origin becomes unstable, see Fig. 1c. In the model,
the origin represents a state of “no decision” (the MPs do not take any side),
while the two stable equilibria appearing after the crossing of the bifurcation point
correspond to success and failure of a confidence vote. Since the bifurcation is
of pitchfork type and the network is symmetric, these two equilibria are identical
up to a change of sign, and they represent a partition of the parliament into
two factions, the majoritarian one being the winner of the confidence vote. The
bifurcation point is a function of the least eigenvalue of the normalized Laplacian
of the network, A1(L), see (8). The latter is called in the signed graph literature the
algebraic conflict [25], and it is well-known to be closely related to the frustration
[25, 32, 37|, see Table 4 for an analysis on our data. Similarly, the signature of the
corresponding eigenvector overlaps substantially with the signature of the ground
state spin configuration Spest, see Table 4. Combining the proportionality between
A1(£) and frustration with (8), we get a relationship between the value of 7 at the
bifurcation point, 71, and the frustration of the network. Interpreted in the context
of a government formation process, this relationship states that the duration of
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Figure 2: (a): Correlation between frustration and duration of the government
negotiation talks, quantified in number of days from the general election to the date
the government is sworn in or to the date the government negotiations fail, for each
country and scenarios I, IT and III. Blue bars consider only the cases of success,
yellow bars consider both successes and failures. (b): Index pgov (overlap between
party coalition entering in the government and party majority in the ground state).
(c): Index ngov (energy gap between ground state and “government state”). (d):
Correlation between frustration and fractionalization index (r¢ ), for each country
and scenarios I, IT and III. The average values (of correlation, in (a) and (d), or of
the indexes, in (b) and (c)) are reported inside each plot.

the government negotiation talks (a proxy of 1) is directly proportional to the
frustration of the parliamentary network, see Section 4.7. When the frustration
increases, the model predicts that the bifurcation threshold increases as well (see
[32] and also Fig. 9), meaning that a higher commitment will be required from the
agents in order to escape a state of no decision and to reach a collective nontrivial
equilibrium point. This translates in our model into longer negotiation times for
the government formation phase. The concept is illustrated in Fig. lc.
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Figure 3: Scenario I. Frustration of the parliamentary networks v.s. duration of the
government negotiation talks (days) and corresponding linear regression line, for all
countries of Table 1. The value of Pearson correlation (r) for each country is reported
in the plot heading. Legend: blue circles represent points that are neither outliers,
nor high leverage nor influential. A red symbol indicates an outlier, a triangle a
high leverage point and a symbol with green outline an influential point. Residual
analysis, leverage statistic and delete-1 statistics are used to identify outliers, high

leverage and influential points, respectively.

Yellow square data points indicate

elections corresponding to failure of government negotiations resulting in votes of no-
confidence (Czech Republic in 2006 and 2017) and new elections (Spain in December
2015 and April 2019, Greece in May 2012). Blue regression lines include only the
successful government formations. Including also the failure points we obtain the
yellow regression lines. In all 3 cases, the correlation increases (values are reported
between parentheses).
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Figure 4: Leave-one-out analysis of the correlation for scenario ITI. A single election
is used for the validation set, and the remaining elections (training set) are used to
calculate the correlation (frustration v.s. duration of the government negotiation
talks) for each choice of political positions in the left-right grid. 1000 sets of values
for the left-right political positions of the parties were randomly selected on the
preassigned left-right grid. Here the corresponding correlation values for each set
are shown (gray dots), together with the overall country maximum value (yellow
square) corresponding to the optimal choice for the weights. Red circles represent
the values of correlation obtained when the excluded election is considered (the
frustration is calculated using the optimal choice for the weights found using the
training set). A blue dashed line represents the value of correlation obtained if
the weights are tuned so as to maximize the correlation when all the elections are
considered (i.e., scenario IIT). The red circles are normally very close to the yellow
squares, meaning that the leave-one-out test is normally accurate.
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3 Discussion

A cornerstone of parliamentary democracies is plurality of opinions, which often
manifests itself as antagonism between parties of different factions. This is the
rationale behind our use of the formalism of signed graphs for describing parlia-
mentary networks and their collective decision processes. In particular, in the
paper we investigate how our knowledge over signed parliamentary networks can
be used in order to predict (i) the duration of the government negotiation talks and
(ii) the composition of the successful coalition cabinet formed after the elections.
We show that the frustration of the parliamentary networks can be considered a
good proxy for the complexity of the negotiations among the parties and, in partic-
ular, that it correlates well with the duration of the government negotiation talks.
Moreover, we show that it can be used to obtain an estimate of the post-election
government composition.

In the literature on political networks, signed networks have been used for in-
stance to investigate coalition formation from policy beliefs [38-40], to analyze
the influence of political polarization on cabinet stability and duration [41], or for
inferring political polarization from voting records [42]. The approach we take in
this paper is different as we use signed networks to investigate the government
negotiation process, in particular the one that immediately follows a general elec-
tion. It is known in the literature [5, 7] that the dynamics of such post-electoral
government formation is somewhat simpler to analyze than that of inter-election
governments. In fact, the antagonism among parties likely tends to peak during
the pre-electoral period, hence it is natural that also the early phase of a legislation
keeps reflecting the pattern of alliances and rivalries that characterized an electoral
ballot. Furthermore, it is also plausible to assume that in early post-election de-
cisions, MPs tend to follow thoroughly the party lines, and therefore that parties
behave as homogeneous entities, as we are doing here. Modeling inter-election
government processes may require to take into account the behavior of individual
MPs and their history of votes, which requires to collect different datasets, difficult
to obtain and even more difficult to analyze [42].

If we zoom on the scatter plots of frustration vs negotiation days of the in-
dividual nations (see Fig. 3 for scenario I, Fig. 12 and Fig. 13 for scenarios II
and III), we see that in several cases what determines the high correlation is a
small fraction of the data, corresponding to elections with a “hung parliament”.
In our framework, rather than being considered spurious points, these data carry
a strong informative value, as they correspond to parliamentary networks having
a frustration higher than usual for that nation (in Fig. 3: a right outlier on the
horizontal axis, according to a leverage statistic test). In the vast majority of cases,
they happen to correspond to long cabinet negotiation times, i.e., to outliers from
above also in the vertical axis (residual analysis test), see for example the plots
for Germany, Ireland, Spain and Sweden in Fig. 3.

The Czech Republic seems to be the only exception to this rule, with a high
value of negotiation days for the 2006 election corresponding to the least frustra-
tion. As a matter of fact, this point represents a special situation that does not
violate the general rule proposed in the paper. In fact, the 2006 Czech election
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saw a parliament split into two exact halves, which also corresponds to our Spest
having 50% of +1 and 50% of —1. Since a tie is not a majority, its frustration may
fail to capture the true complexity of the negotiation, if the two halves correspond
also to opposite ideological factions, as in the Czech case. More precise comments
on this example are reported in Section B.8.

In the Czech Republic constitution, a cabinet is first sworn in and then con-
firmed by a confidence vote within 30 days. In two occasions (after the 2006
and 2017 elections) the candidate cabinets (Topoldnek I and Babis I) failed to ob-
tain the confidence of the Parliament and new rounds of government negotiations
started, after which the new candidate cabinets (Topoldnek II and Babis II) were
sworn in. In our model, the 2006 and 2017 Czech elections give rise to 2 points,
one corresponding to failure and the other to success, see Fig. 3 and Fig. 14a.

The Czech unsuccessful attempts are among the few cases of “failure” in our
datatset. In fact, in the 29 countries we analyzed, restricting to the post-election
phase, only in a few cases unsuccessful (“official”) confidence votes have occurred
and are therefore available for our data analysis (the countless failed attempts of
formateurs normally stop without a formal vote, and are impossible to document
systematically). Other failure points can be obtained if we consider legislatures
that ended without a government being sworn in. We could find such data for
Spain and Greece, see Section B.9 and Fig. 14a for more details. Figure 3 shows
the correlation between frustration and duration of the government negotiation
talks with and without these failure points. It can be seen that our predictions
improve when also the latter are included.

Alongside the Czech case, in Section B.8 we analyze in detail several cases
in which a hung parliament led to long negotiation times (Ireland in 2016/2020,
Spain in 2015/2016,/2019 and Germany in 2017). Here it is instructive to give some
detail for the Swedish elections of 2018. In Sweden after the 2018 elections it took
a record four months to form a government, and in fact the 2018 point has the
highest frustration and is highly influential in the regression line. This example is
also emblematic of the difficulties encountered when taking into account a priori
information like pre-electoral coalitions or ideological classifications of parties (i.e.,
rile). The government formed after the 2018 Swedish elections, Social Democrats
(S) and Green Party (MP) with support in the form of abstention from Centre
Party (CP), Liberals (L) and Left Party (V), broke the pre-electoral coalition
alliances (S+MP+V, Moderate Party+CP+Christian Democrats+L) hence in sce-
nario IT the 2018 election point is still influential, but leads to an overall negative
correlation, see Fig. 12. On the other hand, for certain countries adding coalition
and ideological spectrum information increases significantly the correlation. For
instance in Italy it increases from 0.06 to 0.45 (scenario IT), which grows further
to 0.95 in scenario ITII, see Fig. 12 and Fig. 13.

Under the assumption of homogeneous party behavior, the adjacency matrices
describing the parliamentary networks have blockwise identical entries, see Sec-
tion A.1 for the details. This means that the energy landscape determined by the
functional (1) with spin-like (i.e., +1) states can be explored systematically. For
scenario I, the values of energy corresponding to the various configurations are
shown in Fig. 11 for all countries and all elections. Since the weights in this sce-
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nario are restricted to +1 and —1, there are normally several degenerate ground
states (leftmost bin in the histograms of Fig. 11, see also Fig. 15), as well as many
other low energy states. Each state corresponds to a partition of the parliament
into two aggregations of parties. The index 7g0, shown in Fig. 2c expresses how
close the energy of the “true government” is to that of the ground state. As can
be seen in Fig. 11, in the vast majority of cases, it is very close to the ground
state energy (ngov = 0.95 in scenario I). When the adjacency matrix is weighted
(scenario IT and IIT) degenerate states become less frequent. The value of 1goy
decreases, although it remains always around 0.8, sign that the “true government”
is never “energetically implausible” for our selected weights (i.e., formed by im-
plausible alliances of ideologically distant parties, unless this is strictly necessary
for a particular parliament to achieve a majority).

En passant it is worth observing that our candidate government coalition Spegt
subsumes also the notion of “minimal winning coalition” of [2], i.e., in the ground
state a government majority is reached but not unnecessarily exceeded. This is
always true for scenario I, while in scenarios IT and ITI the government coalition
can be minimal or surplus, depending on the party coalitions.

The fractionalization index F' (see Section 4.4 for a definition) is a widely used
measure of concentration [12]. In our context, it is linked to the probability that
two randomly chosen MPs belong to different parties. The equally popular effective
number of parties Ny [11] can be derived straightforwardly from it: No =1/(1—F).
The “power 2” present in the formulas for F' and Ny (see Section 4.4) has been
interpreted for instance in terms of mean and variance of the distribution of seats
per party [43]. By looking from a signed network perspective, for scenario I, we
can give another interpretation, namely in terms of number of positive/negative
edges associated to the parliamentary network. In fact, F' is the fraction of neg-
ative edges in the signed graph, and for scenario I the frustration follows very
closely this index, see Fig. 2d. The only cases in which it deviates slightly (e.g.,
Albania, North Macedonia, UK, see Fig. 16) are associated to predicted minimum
winning government coalitions Ppest (corresponding to Spest) which consist of a
number of seat in excess of the absolute minimum of 50% +1 of the seats. An exact
formula expressing frustration in terms of fractionalization index and seat excess
in a minimum winning coalition is given in Section 4.4 (see also Section B.4). The
consequence is twofold: first, even though frustration (a measure on signed graphs)
is conceptually different from standard measures of parliamentary fragmentation,
the fact that it nearly perfectly correlates with the fractionalization index F’ means
that it is consistent with the existing literature. Second, as opposed to the classi-
cal fragmentation indexes, frustration also encodes information on the minimum
winning coalition principle.

If in scenario I frustration is a close proxy for classical measures of parliamen-
tary fragmentation, in scenarios IT and III the two quantities ¢ and F' no longer
coincide, as the signed adjacency matrix of a parliamentary network now has be-
come weighted, which alters the value of (, see Fig. 2d. In this respect, the method
we are proposing is quite versatile, as it can easily incorporate both the basic frag-
mentation measure used in the literature as well as other factors, like ideological
polarization and pre-existing party coalitions, as long as these factors can be ex-
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pressed as sets of weights for the adjacency matrix of the signed parliamentary
network.

In conjunction with the dynamical model shown in Fig. 1lc, it is worth observ-
ing that crossing a bifurcation in our model (7) always leads to the onset of two
equilibria with opposite signatures, say z* and —z*. These two equilibria are
aligned with the direction of the eigenvector of the least eigenvalue of the normal-
ized Laplacian, and are related to success (Spest, which has more positive than
negative entries) and failure (—Spest) of a confidence vote. In the vast majority
of cases, only the first equilibrium is seen in our data, although some sporadic
cases of failure to win parliamentary confidence (with a formal vote) are reported
for some countries and are mentioned above. Our model (7) is symmetric and
cannot account for this symmetry breaking effect. However, more sophistical mod-
els, such as the one considered in [29, 30], in which external influences and peer
pressure lead to unfolding of the pitchfork bifurcation, can be used to capture this
phenomenon. In particular, in the context of parliamentary systems, the pressure
from the public opinion, from the media and from the parliament itself is to avoid
a formal vote of confidence when the chances of passing it are null or even just slim,
unless dictated by constitutional rules. How to modify the model (7) to account
for these external factors will be the subject of future research.

In order to understand the confounding influence of unmodeled factors on our
statistics, it is worth noticing that low values of pgoy Or 7gov can often be ob-
served in two special cases not explicitly included in our model: when a minority
government is formed after the election (our government configuration Sgoy does
not include parties that support the government in the parliament but have no
assigned ministers) or, in bicameral systems, when a candidate cabinet needs to
achieve a majority in both chambers of the parliament (only the lower chamber
is analyzed in this study). Consider for example Italy: low values of 7y, are ob-
tained after the 1996,2013 and 2018 elections, see scenario IT and IIT in Fig. 5.
The 1996 election sees the formation of a minority government, the Prodi I cabi-
net (a coalition of centre-left parties) which, while enjoying the confidence in the
Senate of the Republic, did not manage to secure a majority in the Chamber of
Deputies. This government had to be supported by the Communist Refounda-
tion Party (PRC) and some other smaller parties in order to achieve majority in
both chambers of the parliament. If we include these parties in the government
configuration, now described by Sgov4supp (see Section 4.5), we can observe that
the energy gap between the ground state and the energy functional e(Sgovtsupp)
decreases, see the 1996 election in Fig. 5. The opposite situation happened instead
at the 2013 election where, while a clear majority was reached in the Chamber of
Deputies by the centre-left alliance (that won 345 of the 630 seats), none of the
party alliances obtained a majority in the Senate, whose seats were won mostly by
three party blocs: the centre-left alliance, the centre-right alliance and the Five
Star Movement (M5S), holding respectively 123, 117 and 54 of the 315 total seats.
However, neither the centre-left nor the centre-right coalition wanted to form a
government with the M5S party. After 62 days of government negotiations, the
Letta cabinet, a grand coalition comprising parties from both the left and right
side of the political spectrum, was sworn in. This configuration of parties was far
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Figure 5: Energy landscape in Italy for each scenario (I, IT and III) and election,
i.e., values of the energy e(S) calculated according to (1) for all the 2" (np = n.
of parties in the parliament) choices of S = diag{S1,...,Sn,}, S; = s;lc;, s; = £1.
The blue dot indicates the minimum of such energy functionals, i.e., the frustration
(2). The red line represents e(Sgov), i.e., the value of the energy functional corre-
sponding to the government, while the dashed green line represents e(Sgov4supp)s
i.e., the value of the energy functional corresponding to the government plus the
other parties providing support in parliament without formally entering into the
government coalition (see Section 4.5).

from being a “minimum winning coalition” which, together with the fact that pre-
electoral coalitions had to be broken to reach a cabinet coalition of ideologically
distant parties, explains the low value of 740, we obtain for the 2013 election in
all three scenarios. For example, in scenario I1I where the pre-electoral coalitions
and the ideological differences between parties are taken into consideration, our
ground state corresponds exactly to the centre-left coalition, which is energetically
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far from the Letta cabinet coalition, see Fig. 5 (2013 election). Moreover, both
the 2013 and 2018 elections are examples on how the presence of the “big tent”
M5S party (which does not have a clear classification on the left-right scale) fur-
ther increases the complexity of the government negotiation process: in 2018 the
Conte I cabinet was sworn in only after an agreement was reached between the far-
right Lega and the M5S and, at 89 days, it is the longest government negotiation
process since 1992 (where we start our analysis). The same conclusion applies if
we consider the signed network corresponding to the Senate of the Republic. In
all three scenarios the governing coalition (together with its support in the par-
liament) corresponds to the least energy achieving a majority in both upper and
lower chamber, see Fig. 6 for scenario III, with the exception of the 1992,2013
and 2018 elections.
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Figure 6: Comparison of the energy landscapes in the Chamber of Deputies and
Senate of the Republic in Italy for scenario III. The red dot indicates the value
of the energy functional corresponding to the government configuration Sgov, while
the green diamond indicates the value of the energy functional corresponding to the
party configuration Sgoy-tsupp, Which includes also the parties providing external
support to the government in the parliament (see Section 4.5). The values of the
energy functional corresponding to majority configurations (i.e., party coalitions
holding majority of seats in both chambers of the parliament) are highlighted with
a yellow color, while a purple color indicates party coalitions which have the majority
of seats in only one chamber (see Section B.11 for details).
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There is a significant difference between scenarios I and IT on the one hand,
and scenario ITI on the other. In the first two scenarios, in fact, it is possible
to claim that the correlation observed is actually a form of causation: the frus-
tration of a network is computed solely on the basis of the data of the problem
available ex ante (n. of parties and n. of MPs per party for scenario I; n. of
parties and MPs plus coalition and rile for scenario IT) without making use of any
tuning parameter to fit the data. Hence a claim that the level of frustration is a
“cause” (or one of the causes) behind the duration of the government negotiation
phase, seems a reasonable one, given our interpretation of frustration as amount
of antagonism present in a parliament. In scenario ITI, instead, the edge weights
of the parliamentary network are tuned so as to maximize the correlation between
frustration (a function of the edge weights) and duration of the negotiations, hence
this scenario corresponds more to an a posteriori party classification based on a
party behavior over the years. The rationale behind this approach is that a party
“realpolitik” is a combination of factors such as those composing indexes like rile
(ideological, social, economical, military, etc) but also of other variables like prag-
matism, opportunity, necessity, national interest, etc, whose relative importance
is difficult to assess and quantify. Notice that unlike in scenario II where new
rile values are available at each new general election, in scenario IIT we keep the
weights fixed throughout each party history, meaning that this method can have
predictive power for future elections.

To evaluate such predictive power, we can consider a “leave-the-last-one-out”
validation, which is a particular case of the “leave-one-out” analysis we have per-
formed (see Fig. 4 and Section 4.8). When we consider the last (most recent)
election as the validation set, we can observe that our model (scenario III) is able
to predict the duration of the negotiations in most countries, see e.g., Denmark,
Finland, Iceland, Italy, Slovakia, Spain, etc., in the regression plots of Fig. 17. How-
ever, there are few cases in which our scenario ITI must necessarily fail, namely
when a country experiences a hung parliament for the first time in the latest elec-
tion, see Sweden or Germany in Fig. 17. These failures are of course expected
given the nature of the model and of the test (the validation set proposes a novel
situation to the model). This confirms that high leverage and influential points
are crucial to our approach.

As can be seen in Fig. 3, the scales for both frustration and government negotia-
tion days vary widely between states. For the frustration this is due to factors such
as number of MPs and parties, while for the negotiation days it is due to different
national constitutional rules and traditions. Nevertheless, after a suitable normal-
ization (see Section 4.9), the data for the different nations can be assembled into
pan-European time-series. As shown in Fig. 7, a few significant trends are clearly
emerging: both frustration and government negotiation times have nearly doubled
over the last 30 years. The increased frustration is due to an increase in parliamen-
tary fragmentation (recall that in this scenario the frustration follows very closely
the fractionalization index F'), which is reflected by the increase in the number
of parties represented in parliament, see Fig. 7c, and by parties of smaller size,
see Fig. 7d. Likely factors behind these trends are the erosion of ideology-driven
historical parties, the rise of populist and nationalistic parties and the appearance
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of post-ideological movements such as the “big tent” parties (e.g., M5S in Italy
and United We Can in Spain). Overall, these factors add “disorder” to our par-
liamentary networks. In spite of the political sphere being commonly referred to
as the quintessential “art of compromise”, this increased disorder puts a strain
on the functioning of our political systems. By representing disorder in terms of
graph frustration, our models provide a natural explanation and a quantitative
assessment of some of the observable consequences of this phenomenon.
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Figure 7: Yearly trends for the ensemble of 29 nations of Table 1 (normalized values).
The gray boxes indicate the mean value for each year, the dashed black line the best
linear fit for these mean values. (a): Frustration for scenario I; (b): Duration of
the government negotiation talks (days); (c): Number of parties in parliament; (d):
Maximum number of MPs per party in parliament.

4 Materials and Methods

4.1 Data description

A total of 29 European countries, whose system of government is a Parliamen-
tary Republic or a Parliamentary Constitutional Monarchy, were considered in
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the analysis and are listed in Table 1. Countries adopting a Presidential (e.g.,
Belarus, Cyprus) or Semi-presidential (e.g., France, Georgia, Lithuania, Poland,
Portugal, Romania, Russia, Ukraine) system were not considered. Countries that
have switched from Semi-presidential to Parliamentary system in recent times (e.g.,
Armenia) were also disregarded. Countries with a short history of political elec-
tions (less than five) were excluded from the analysis (e.g., Montenegro, Kosovo).
The Republic of Malta has not been considered given that there are only two
parties competing in the elections, hence its parliamentary graph is always struc-
turally balanced, with zero frustration (see below). When a bicameral system is
adopted, we only consider data for the lower house.

We are interested only in general elections called after the dissolution of the
parliament and only in the cabinet formation process immediately following the
elections.

Data were collected from various sources such as the Manifesto Project Database
[44], the Parliaments and Governments Database [45], the new Parline (IPU’s
Open Data Platform) [46], the Chapel Hill Expert Survey (CHES) [47, 48] and
WIKIPEDIA. To review the information other references were consulted, such as
[49-53] and [4] (in particular the last reference provided additional information
regarding the existence of pre-electoral coalitions). The following data are con-
sidered: the election dates, the political parties winning seats at the elections
and their position in the left-right political spectrum, the existing pre-electoral
alliances, and the composition of the government formed after the elections and
approved by the Parliament (confidence vote) in terms of swearing-in date, com-
position and status (minority or majority). Failures in forming a government are
determined from unsuccessful confidence votes or from dissolutions of parliament
without any government having been formed. All data were cross-checked on dif-
ferent datasets whenever possible.

As Table 1 shows, the number of elections considered for each country varies
between 6 and 13, and we decided to start the analysis from election years around
1980 or later, given the difficulty to find information about the elections and/or
parties involved before that year. However, some events considered to be partic-
ularly influential have moved the starting point for some countries, see Table 2.
Our data collection stops at Fall 2020.

4.2 Construction of parliamentary networks

A parliamentary network is an undirected, complete graph in which each MP is
a node. MPs from the same party are linked through positive edges of weight
equal to +1, while MPs from different parties are linked through signed edges that
can be chosen according to the following scenarios (see Fig. 1a). I: unweighted
all-against-all (all weights equal to —1), see Fig. 1b; II: weighted according to
the ideological spectrum (computed according to the rile index [33, 44]) and pre-
electoral coalitions (MPs from parties involved in a coalition have positive edge
weights), see Fig. 8a (top); III: weighted according to both a semi-randomized
(and optimized) left-right grid and pre-electoral coalitions, see Fig. 8a (bottom).
In this last case we considered 10000 different sets of values for the party positions
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in the left-right political spectrum (which we kept fixed for all the elections) and
computed the corresponding values of correlation between frustration and dura-
tion of government negotiation talks for each set. For each country the “optimal”
choice of political positions corresponds to the one giving highest correlation. See
Section A.1 for the details.

We assume that parties are homogeneous entities: each MP relates (in terms of
cooperation or antagonism) to other parties’ MPs according to his/her party line.
The resulting signed adjacency matrices are consequently always block matrices,
see Fig. 1b and Section A.1 for more details.

4.3 Measuring the frustration of signed parliamentary networks

The notion of structural balance [22, 26] captures the idea that it is possible to
split a graph into two subgraphs such that all edges on each subgraph are positive,
while all edges through the cut set that splits the graph are negative. In our
parliamentary network it could represent a two-party parliament or, in a scenario
including electoral coalitions, a parliament split into two coalitions. In general,
the signed parliamentary networks we obtain (in all scenarios) are not structurally
balanced. In this case, we use the notion of “frustration” to measure the distance
of a signed network from a structurally balanced state. Let £ be the normalized
Laplacian corresponding to the signed graph, defined as £ = I — (diag{|A|1})~'A,
where A is the adjacency matrix of the network, |-| is the element-wise absolute
value, 1 is the vector of 1s and diag{x} is a diagonal matrix having the vector x
on the diagonal. By associating a binary variable s; = £1 (spin up and down) to
each party, one can define an energy-like quantity

() = 5 SI1E]+ SLS];, (1)

1,J#1

where S = diag{S1,...,5n,} with S; = s;I.; and s; = £1 (i =1,...,np), n; is the
number of parties in the parliament and ¢;, ¢ = 1,...,np, is the number of seats for
the i-th party (322, ¢; =n where n is the number of seats in parliament). Notice
that e(S) = e(—S). The frustration of the parliamentary network corresponds
to the ground state energy, i.e., the minimal of this functional over all possible
combinations of parties

= sdiagBh 5, ) )
Si=silc; 8;=%1

Denote +Spest the diagonal matrices achieving the optimum in (2), with Spest
(“success”) having more +1 entries than —Spest (“failure”).

4.4 Frustration vs fractionalization index

The fractionalization index F' is one of classical measures of parliament fragmenta-
tion [12]. It can be expressed in terms of the Laasko-Taagepera effective number
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of parties No as FF=1— NLQ, where No is defined as

1 n?
ZZZI (%)2 Z;zl 012

with ¢; the size of the i-th party, n, the total number of parties and n the total
number of MPs [11].

In our scenario I (all-against-all, no pre-electoral coalitions), the fractional-
ization index F corresponds to the fraction of negative entries in the adjacency
matrix of the network. In fact, since all the party-party weights are equal to —1
and A is a n x n block matrix where each block has size ¢; x ¢; (4,7 =1,...,np), it
follows that the total number of negative elements in A is equal to Z?;’ =1 CiCj =

np .2
n? — Z?:pl c? =n? (1- %) =n2F and that the fraction of negative entries is
equal to F.

As shown in Fig. 2d and Fig. 16, the frustration of the unweighted signed net-
works of scenario I has a very high correlation (0.99 in average) with F'. To explain
this correlation, we can observe that the frustration of a signed unweighted parlia-
mentary network corresponds (up to a multiplicative constant) to a difference of
three terms, the fractionalization index F', a constant term and a third term inter-
pretable as the “distance” of the minimum winning coalition in correspondence of
Shest from the 50% of the seats:

on? 1 1 [ Epest \ 2
C*n—1’<F_§+ 2(n/2> ) )

~
“distance” of Ppegt from 50%

where Ppest describes the majority coalition in correspondence of Spegt (see also
Section 4.5) and Eyeg € [0, 5] is the number of seats in excess of Peg; with respect
to 50% of the total number of seats: Zi:piepbcst ¢; = 5 + Ehest, Where p; represents
the ith party (see also Section B.4 for more details). This “distance” attains its
minimum value when Sy corresponds to 50% —+1 of the seats in a parliament,
and grows when the seat excess corresponding to Spest Srows.

4.5 Minimum energy government coalition

For each country and parliamentary election we compute the energy (1) for all
2™ (np, is the number of parties in the parliament) possible party configurations
S (see Fig. 11 for the energy landscape in scenario I) and the frustration (2) of
the signed parliamentary network as the minimum of such energies. Our predicted
government coalition, denoted Phest, is given by the corresponding group of parties
achieving a majority in Spest: Y ;. Pi€Ppest Ci > 5 where ¢; is the number of seats
gained by the party p; and n is the total number of MPs in parliament. Similarly,
let Sgov be the party coalition that effectively obtained a confidence vote for that
election and Pgoy the list of corresponding parties, Sgoy = diag{si/c,,...,5n, Icnp}
with s; = +1 if p; € Pgoy or s; = —1 otherwise. Denoting the cardinality of a set as
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card(-), the fraction of government coalition captured by the ground state party
coalition Ppest can be defined as

card(Poest N Pgov)
ov — 5 )
Pe card(Pgov) (5)

see Fig. 2b (and Fig. 10c, for scenario I only). The closer the value of pgoy is to 1,
the better our estimate represents the actual cabinet composition. In scenario I
the ground state may be “degenerate”, i.e., multiple signature matrices Spegt could
give the same value of frustration, and/or the corresponding party group Phpest may
hold exactly half of the seats in the parliament (3., cp, ¢ = 5). In the first
case, we consider the matrix Speg; giving maximum value of pgov. In the second,
we take as Spegt the matrix that yields the least value in (2) while satisfying the
condition 3=, .cp ¢ > 5 (see Section B.2 for the details). The case in which
Shest 18 unique and its Ppegy corresponds to exactly 7 is also degenerate as the
ground state has no majority.
It is also possible to compare the frustration ¢ with the actual government
“energy”:
1 G(Sgcw) —C
Mleov = T Taxg e(S)—¢’

(6)

Ngov expresses how close the energy of the actual government is compared to the
frustration, i.e., the theoretical minimum of such quantity over all possible party
combinations, see Fig. 2¢ (and Fig. 10d, for scenario I only).

When a minority government Py, needs additional support to win a confidence
vote, we denote Pgypp the set of parties which support the cabinet in the parlia-
ment without being explicitly part of it and Sgov4supp = diag{sllcl,...,snplcnp}
the corresponding party configuration, with s; = +1 if p; € Pgoy UPsupp o1 57 = —1
otherwise. The intuition is that e(Sgov4supp), i-€., the value of energy functional
corresponding to the (majority) coalition supporting the government in the par-
liament (computed according to (1)), should be energetically closer to our ground
state than e(Sgov), i.e., the energy functional corresponding to the (minority) gov-
ernment. See for example the 1996 election in Italy in Fig. 5. This analysis is
carried out only for Italy, however we expect similar results for the other countries
where minority governments are common, such as Denmark, Norway or Sweden
(see Fig. 14b).

4.6 Dynamical model of government formation

We can describe the government formation process by the nonlinear interconnected
model of collective decision-making introduced in [30-32],

t=—-Ar+7mAY(z), x€R™ (7)
In (7), n is the number of elected MPs, the vector z = [z --- 2, represents
their opinions, A is the adjacency matrix of the signed parliamentary network,
A =diag{d1,...,0,} is a diagonal matrix such that & =", |a;;| for all 4, 1(z) =

Ve
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[1(21) -+ Y (2n)]T is a vector of sigmoidal and saturated nonlinearities (express-
ing how the MPs transmit their opinion to the other MPs in the network) and =
is a positive scalar parameter acting as bifurcation parameter. More precisely, the

bifurcation occurs at 1

T 1ML

see Fig. 1c, where A\1(L£) is the smallest eigenvalue of the normalized signed Lapla-
cian £ associated to (7), see Section A.3 for the details.

(8)

1

4.7 Rationale behind the correlation between frustration and
duration of the government negotiation phase

If we denote 7 the duration of the government negotiation phase, from election
day to the day the government is sworn in (and, for the cases of failure, to the
day in which the formateur looses a confidence vote or to the day in which the
parliament is dissolved without a government having been formed), then 7 and
the frustration ¢ are related by a form of direct proportionality (here indicated by
the symbol “~”): 7 ~ (. This can be explained in terms of the following chain
of relationships linking 7 to ¢ via the bifurcation parameter 71 and the algebraic
conflict A1 (L):
1

DY (L)’
While the second on these relationships is analytical, the first and third are only

numerical. The correlation plots of Fig. 3 (Fig. 12 and Fig. 13 for scenario IT and
IIT, respectively) are an expression of this 7 ~ ¢ relationship.

A (L) ~ ¢

T ~T1, T

4.8 Leave-one-out analysis for scenario Il

In scenario III, differently from I and II, the political positions of the parties
are fixed in time and are chosen to maximize the Pearson correlation between
frustration of the parliamentary networks and duration of the government negotia-
tions. To validate this method we have performed a leave-one-out analysis, whose
idea is to use only N — 1 elections (where N is the number of elections for each
country) to determine the political positions of each party and then check how
well the model “fits” the excluded election, by comparing the Pearson correlation
coefficients (frustration of the parliamentary networks v.s. duration of the gov-
ernment negotiations) obtained with and without the data point corresponding to
this election.

The procedure is described in detail as follows. For each country, the data
on the parliamentary elections are divided into two sets: a validation set, made
of a single election, and a training set, made of the remaining (N — 1) elections.
The training set is used to find the “optimal” choice of political positions by
maximizing the correlation frustration v.s. duration of the government negotiation
talks. 1000 sets of values for the left-right political positions of the parties (see
(10) in the Appendix) are randomly selected on the preassigned left-right grid,
and for each choice of political positions the Pearson correlation (frustration v.s.



Paper D A signed network perspective on the government formation process in
176 parliamentary democracies

days) is calculated: the “optimal” choice for the weights corresponds to the one
giving the best correlation index (among the 1000). This choice for the weights
is used to build the parliamentary network corresponding to the excluded election
(the validation set), whose frustration is then computed. Finally, the correlation
(frustration v.s. days), when all the NV elections are considered, is calculated. This
process is repeated NV times, each time by selecting a different election as validation
set, obtaining (for each country) N x 1000 correlation indexes calculated using the
training sets and N “optimal” choices for the weights and corresponding values of
correlation.

The values of correlation (frustration v.s. days) obtained when optimizing
for N —1 elections (i.e., leave-one-out analysis) are then compared with those
obtained when optimizing for N elections (i.e., scenario III). Figure 4 illustrates
these results. A particular case of this analysis is the “leave-the-last-one-out”
validation, where the validation set consists of the last election. Figure 17 shows
the regression plots between duration of government negotiations and frustration
where the weights of the parliamentary networks are chosen so as to maximize the
correlation (days v.s. frustration) in the first N — 1 elections.

4.9 Yearly trends

To obtain the yearly trends shown in Fig. 7 we compute and plot, for each country,
the normalized values m over the election years, where x is the N-dimensional

vector of interest (frustration, government negotiation days, number of parties in
the parliament and maximum number of MPs per party), N is the number of
elections, and ||-||2 the Euclidean norm.
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Country
(structure of
parliament)
Albania

(U)

Andorra

(U)

Austria

(B)

Belgium

(B)

Bosnia and
Herzegovina
(B)
Bulgaria
()

Croatia
(U)

Czech
Republic
(B)
Denmark
(U)

Estonia
(U)
Finland
(U)

Germany
(B)
Greece

(U)

Hungary
()
Iceland
()
Ireland
(B)

Italy
(B)
Latvia
(U)

Luxembourg
(U)

North
Macedonia
(U)

Moldova

(U)

Netherlands
(B)

Election Dates

1992, 1996, 1997, 2001,
2005, 2009, 2013, 2017
1993,1997, 2001, 2005,
2009, 2011, 2015, 2019
1979, 1983, 1986, 1990,
1994, 1995, 1999, 2002,
2006, 2008, 2013, 2017,
2019
1995, 1999, 2003, 2007,
2010, 2014, 2019
1996, 1998, 2000, 2002,
2006, 2010, 2014, 2018

1991, 1994, 1997, 2001,
2005, 2009, 2013, 2014
2017
1992, 1995, 2000, 2003
2007, 2011, 2015, 2016
2020

1992, 1996, 1998, 2002,
2006, 2010, 2013, 2017

1981, 1984, 1987, 1988,
1990, 1994, 1998, 2001,
2005, 2007, 2011, 2015,
2019
1992, 1995, 1999, 2003,
2007,2011, 2015, 2019
1991, 1995, 1999, 2003,
2007, 2011, 2015, 2019

1990, 1994, 1998, 2002,
2005, 2009, 2013, 2017
1990, 1993, 1996, 2000,
2004, 2007, 2009, May
2012, Jun 2012, Jan
2015, Sept 2015, 2019
1990, 1994, 1998, 2002,
2006, 2010(%)
1995, 1999, 2003, 2007,
2009, 2013, 2016, 2017
1992, 1997, 2002, 2007,
2011, 2016, 2020

1992, 1994, 1996, 2001,
2006, 2008, 2013, 2018
1993, 1995, 1998, 2002,
2006, 2010, 2011, 2014,
2018
1984, 1989, 1994, 1999,
2004, 2009, 2013, 2018
1990, 1994, 1998, 2002,
2006, 2008, 2011, 2014,
2016, 2020
1994, 1998, 2001, 2005,
July 2009, 2010, 2014,
2019(®)
1981, 1982, 1986, 1989,
1994, 1998, 2002, 2003,
2006, 2010, 2012, 2017

N. of Seats
(n)

140

155 (1997 only)
28

183

150

42

240

140 +M+D®)
(from 2000)

127 (1995)

138 (1992)

200

598+0+L(P)

300

386
63

159 (2020)

157 (2016)

166 (until 2011)
630

100

60 (from 1989)
64 (1984)

120 + A(D

101 (from 1998)
104 (1994)

Relevant Events

1991

1993

1993
1992
1995
1991

1991

1993

1991

1991

2000

1990

1989

1991

1993

1991

1991

1991

Dissolution of Social Republic,
start of the 4th Republic.
Adoption of a new Constitution.

Belgian Constitution, Belgium
becomes a federal state.
Independence from SFR Yu-
goslavia.

New Constitution.

New Constitution.

Independence from SFR Yu-
goslavia.

Independence from Czechoslo-
vakia.

Independence from the Soviet
Union.

Constitution amendments: the
powers of the President are di-
minished.

New constitution; from semi-
presidential to parliamentary
republic [54].

German reunification.

Third Republic.

From Bicameral to Unicameral
Parliament.

New electoral system.

Independence from the Soviet
Union.

Independence from SFR Yu-
goslavia (officially recognized in
1993).
Independence from the Soviet
Union.

Continued on next page
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Table 2 — continued from previous page
Norway  1981,1985,1989,1993, 169 (from 2005) -
(U) 1997, 2001, 2005,2009, 165 (1989-2001)

2013,2017 157 (1985)
155 (1981)
Serbia 2007, 2008, 2012, 2014, 250 2006 Independence declared from the
(U) 2016, 2020 Union of Serbia and Montene-
To.
Slovakia  1992,1994, 1998, 2002, 150 1993 %ndependence from Czechoslo-
(U) 2006, 2010, 2012, 2016, vakia.
2020
Slovenia 1992, 1996, 2000, 2004, 90 1991 Independence from SFR Yu-
(B)  2008,2011,2014, 2018 goslavia.

Spain  1989,1993,1996,2000, 350 =
(B)  2004,2008, 2011, 2015,
2016, Apr. 2019, Nov.

2019

Sweden  1982,1985,1988,1991, 349 =

(U) 1994, 1998, 2002, 2006,
2010, 2014, 2018
United  1983,1987,1992,1997, 649 +1 speaker =

Kingdom 2001, 2005, 2010, 2015, (from 2010)
(B) 2017, 2019 645 +1 (2005)
658 -+1 (2001,1997)
651 (1992)

650 (1987,1983)
(@) M = minority (8), D = diaspora seats (3 to 6).
® o= overhangs (since 2005), L = leveling seats (since 2013).

() The elections dated 2014 and 2018 have not been considered since the new Constitution of Hungary
(2012) changed considerably the number of MPs (hence the frustration is not comparable).

() A = seats for Macedonians living abroad (in case of sufficient voter turnout).

(e) The April 2009 election is not considered since no president was elected and new elections had to
be held in July 2009.

Table 2: List of countries considered in this work. For each country, we list: the
structure of the Parliament (B = Bicameral or U = Unicameral), the election dates
considered in this study, the number of seats in the Parliament (in case of changes,
the year is specified), and the significant events which determined the starting point

in our analysis.

Appendix
A Methods

A.1 Parliamentary network construction

For each country and parliamentary election listed in Table 2 we consider an
undirected graph Geountry = (V,€, A), where V (card(V) = n) is the vertex set, & is
the edge set, and A = [a;;] € R"*" is the adjacency matrix, with a;; representing
the weight of the edge (j,i) € £. Each of the n vertices in V represents an elected
Member of the Parliament (MP), and each edge in £ the relationship between two
MPs, which can be cooperative or antagonistic. A positive edge a;; > 0 means
cooperation between the i-th and j-th MPs, a negative edge a;; < 0 antagonism.
All MPs of a party are always assigned the same weights, i.e., we treat a party
as a homogeneous cluster of nodes. As shown in Fig. 1b, the network Geountry =
(V,€,A) is therefore composed of ny, clusters, represented by the political parties,
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where ny, is the total number of parties which gained seats in the parliament after
the election. This implies that the adjacency matrix A, as well as all the other
matrices of interest, can be seen as a np x n, block matrix:

Ay Ap,
A= ,  with Aij:{
Anot o Ann

(ECZ‘ 7ICi)wi7l7 ]:Z

ECiCj wij) ] il?

where ¢; is the number of seats gained by the i-th party, Ecic; = 11Ci]1§; (simplified
to B, if j = i) is the matrix of all 1s (1, is the vector of size ¢; having all elements
equal to 1), and W = [w;;] € R™ " is the matrix of party-party weights. Its
signed entries w;; describe the interaction between MPs of the party p; and party
P4, in terms of political affinity.

In order to choose the matrix W, we consider different party grouping criteria
and different weight assignment methods. The party grouping criteria are:

1. All-against-all. All parties compete against all parties:

Wy 7

=1 ifi=j (p; and p; are the same party; hereafter: p; = p;)
<0 if p; and p; are different parties.

Electoral coalitions are not taken into account in this case. Germany is an
exception to this rule, in that the Christian Democratic Union of Germany
(CDU) and Christian Social Union in Bavaria (CSU) are always considered as
a single party.

2. Pre-electoral coalitions. Parties in pre-electoral coalitions are cooperating:

=1 ifpi=p
wi; § >0 if parties p; and p; belong to the same coalition
<0 if parties p; and p; do not belong to the same coalition.

Pre-electoral coalitions (explicit or implicit) are obtained from references and
datasets such as [4, 55-59], WIKIPEDIA and the new Parline [46].

In the case of countries where double rounds of elections are common (for
example in Hungary until 2010), we consider also the electoral coalitions made
before the second round (so the ones made before the first round plus the ones
made between the first and second round).

We always assume that w;; =1 and that w;; = wy;, i.e., that W (and hence A) is
symmetric. In turn, this means that Geountry is undirected.

As for the weights themselves, we consider both the cases of unweighted (but
signed) W and weighted (and signed) W. In the unweighted case, w;; €
{—1, 41}, with +1 only on the diagonal (all-against-all case). The resulting graph
is complete, undirected and signed.

In the weighted case, the general philosophy is that off-diagonal weights be-
tween parties which are not in pre-electoral coalition should be negative, small (in
absolute value) for ideologically close parties and approaching —1 for ideologically
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antipodal parties. Instead, off-diagonal weights between parties in pre-electoral
coalition should be positive and close to 1 for ideologically close parties. In order
to define the matrix of weights W = [wj;], the first step consists in assigning to
each political party a position in the left-right ideological spectrum. For this, we
follow two different criteria, as shown in Fig. 8a: (1) use data from the Manifesto
Project Database, in particular the so-called rile index [33]; and (2) place the
parties on a predetermined left-right grid and assign to them specific positions
randomly. It is convenient to start the description by the second approach.

2. Predetermined left-right grid with randomly assigned positions. For
each country and each political election, we consider each political party gain-
ing seats in the Parliament and classify its political position as one of the
following: Far-Left (FL), Left to Far-Left (LFL) , Left (L), Centre-Left to
Left (CLL), Centre-Left (CL), Centre to Centre-Left (CCL), Centre (C), Cen-
tre to Centre-Right (CCR), Centre-Right (CR), Centre-Right to Right (CRR),
Right (R), Right to Far-Right (RFR), Far-Right (FR), Big Tent (BT). Each
of these labels X (except BT) occupies an ordered position gx in the interval
[gr1, grr] = [—0.5,0.5], i.e., we have the following grid of ordered coarse-grained
political positions between FL and FR:

[CIFL qurL qr qciL 9cL qecrn 9c decr 9cr 9orr r GRFR QFR]7 (10)

see also Fig. 8b.

We assume that the left-right scale is symmetric around the central position
gc = 0. The specific values of gccr, Gers Gerrs Qr, qrrr are chosen randomly,
sorting 5 values drawn from a uniform probability distribution in the interval
[0, 0.5]. The values of grpr., i, gcLL, ger and gecr, are then obtained by symmetry,
see Fig. 8b. Big tent parties do not fit into such a left-right grid, because they
tend to attract voters from the entire ideological spectrum. Examples of big
tent parties are the Italian party Movimento 5 Stelle (5 Star Movement), in the
2018 elections. Consequently, the distance dgr between a big tent party and
any other party must not be “too small” nor “too big” compared with all the
possible differences "Ipi — dp; | for all non big tent parties p; and p;: dpr is then
chosen as the median of the differences, taken in absolute value, between all
possible combinations of the pairwise distances of the positions ggy, - .-, grr,

dpr = median{‘qFL - qLFL| , |QFL - (IL|7~ oy |QFL - QFR|7'~'3|QRFR - qFR‘}~

With these conventions we can proceed to assigning numerical values to the
weights.

Since we take into account also pre-electoral coalitions, we need to assign
weights that are positive to parties in the same coalition. The weights w;;,
i, =1,...,np, are then chosen with the following rule:

o if p; = p; (same party): w;; = 1;
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o if p; # p; (different party):

1 .
—- min — = qp.
2 x,ve{c,CCR,...,FR} lax—avl - ap, ’ij
St gx2qy (parties placed
on the same position)
\ap; — ;| » dp; # p;; Pi-pj not big tent
wij = coal(pi,pj)— (parties on different

positions, none is big tent)
dpr, dp; # dp;; PiOT p; big tent

(parties on different positions,
one of them is big tent)
(11)
The function coal(p;,p;) is equal to 1 if p; and p; are in electoral coalition,
0 otherwise.

Notice that when two parties p; and p; are not in electoral coalition but are
located in the same position (i.e., ¢p, = qu), then we still assume that the w;;
weight is negative, but small (equal to half the least nonzero difference between
any two parties). The weights are kept constant throughout the party history.

To study how different choices of the values gx can influence our analysis, we
decided to consider 10000 different vectors of random values for each country,
retaining the best value (i.e., the value that leads to the highest correlation
between frustration and negotiation days, see below for more details).

1. Rile index from Manifesto Project Database. For each country and par-
liamentary election, the Manifesto Project Database [44] collects information
on the electoral manifestos of the parties. The index denoted rile [33] summa-
rizes their ideology according to various criteria (e.g., its position on economy,
military, international relations, education, welfare, etc.). The political position
of party p; is given by the rile value of the party, properly rescaled to fit our
[—0.5,0.5] normalization: gp, = rile(p;). In case of missing rile for a party p;, its
position gp, is determined using the method discussed above, only considering
a vector (10) which is equispaced in [—0.5,0.5] (i.e., the random assignment to
the gx value is skipped). The weight matrix W is then given by the formula
(11).

In the paper we consider three different combinations of edge weight assignments

and party grouping methods listed in Fig. 1a.

A.2 Structural balance and frustration for signed networks

Consider a signed, undirected, simple and connected network G = (V,£,A). The
normalized signed Laplacian of G is defined as £ =1 — A~'A where the diagonal
matrix A =diag{di,...,0,} has elements §; = Z;'L:1 faij‘ >0,¢1=1,...,n.

A signed network is structurally balanced if all its cycles are positive, i.e., if
each cycle contains an even number of negative edges: in a social network context,
every length-3 signed cycle of a structurally balanced network describes one of
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Figure 8: (a): Constructing a parliamentary network and the corresponding adja-
cency matrix for scenario II (top) and III (bottom). Scenario I is shown in Fig. 1b.
(b): “Political positions” in the left-right political spectrum. (c): Correlation r for
scenario ITI. 10000 sets of values for the left-right political positions of the parties
were randomly selected on the preassigned left-right grid, as explained in Section A.1.
Here the corresponding correlation values for each set are shown (gray circles), to-
gether with the overall country mean value (red diamond) and maximum value (blue
circle). For each country, the optimal choice for the weights corresponds to the one
giving best correlation index (blue circle).

the following concepts: “the friend of my friend is my friend”, “the enemy of my
friend is my enemy”, “the friend of my enemy is my enemy”, “the enemy of my
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enemy is my friend”, see [26] for more details. The notion of structural balance
captures the idea that it is possible to split a graph into two subgraphs such that
all edges on each subgraph are positive, while all edges through the cut set that
splits the graph are negative. In our parliamentary network it could represent a
two-party parliament or, in the electoral coalition scenario, a parliament split into
two coalitions. Equivalent conditions to structural balance are (i) A1(£) =0, and
(ii) there exists a signature matrix S = diag{si,...,sn}, with s; = £1, such that
SLS has all nonpositive off-diagonal entries [60]. It follows that a network G is
structurally unbalanced if and only if A;(£) > 0.

When a network is not structurally balanced, it is of interest to understand how
“far” it is from a structurally balanced state. One idea is to use A1 (L) (the so-called
“algebraic conflict” [37, 61]), which is strictly positive for structurally unbalanced
networks, to measure such a distance; however, in the literature another standard
measure, called frustration indez, is more frequently adopted [24, 26, 62]. It is
defined as the minimum (weighted, if G is a weighted graph) sum of the positive
edges over all signature similarity transformations of £, SLS, with S signature
matrix [32]:

e(g) = min ZWMHE' +S£S]”.
S=diag{s1,...,8n } 2
s;=+1
The computation of €(G) constitutes a NP-hard problem: however, the intuition is
that A1 (L) approximates well (up to a scaling factor) the value of the frustration
index, and in particular that A (L) grows linearly with €(G) [32]. Hence, they can
both be used to measure the structural imbalance of a signed network.

The frustration index, as defined in (12), is also the minimum of a weighted
energy functional over all possible signature matrices S. This terminology is inher-
ited from Statistical Physics, where a (unweighted) signed graph is interpretable
as an Ising spin glass, and the various spin configurations (“spin up” and “spin
down” at the nodes) determine the energy of the spin glass. The least energy that
can be achieved by any configuration (called the ground state) corresponds to the
frustration index (12). The definition of energy functional introduced in [26] for
this purpose can be adapted to networks that are weighted. The weighted energy
functional can be defined as follows,

> 4,j([hij| = hijsisy)

2 Y
where S is a signature matrix, S = diag{s1,...,sp} with s; = £1 V¢, and H =
[hij]l = A7'A is the normalized adjacency matrix. Notice that e(S) = e(—9).
Notice further that by definition of normalized signed Laplacian, it follows that

e(S) = il H| = SHS; _ > i el I+ SLS]U'.
2 2
Hence, the weighted frustration index is the minimum of the weighted energy
functional over all possible signature matrices S (i.e., again, the ground state):
O s aaptnsnom

S;—= 1

(12)

e(S) =

(13)
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As described above, each network Geountry can be partitioned into n;, clusters
(the political parties), with n, being the number of parties involved and gaining
seats in the elections, making the adjacency matrix A a np x n, blocks matrix.
Under the assumption that all MPs of a party follow loyally and unanimously
the designated party line, the definition of frustration index given in (12) can
be specialized to a party-wise (or cluster-wise) frustration index, consisting of
the minimum of all the energy functionals given by (13) over all block diagonal
signature matrices S:

N S:diag?éllr,l...,snp}e(S) (14)
Si=s;lc;, s;==1

where ¢;, i =1,...,np, is the number of seats gained by the party p; at the election.
The difference with (12) is that now the signature matrix S is a block diagonal
matrix (with np blocks): only the relationships between different parties, and not
the ones between single MPs, are taken into account. Computing (14) is much
faster than computing (12). In fact, all energy levels of our parliamentary networks
can be exhaustively explored in a systematic way. The resulting energy landscape
can be represented as histograms, having in the leftmost point the ground state
energy. See Fig. 11 for the 29 countries of Table 2 in one of the scenarios discussed
in the paper (scenario I).

A.3 Dynamical model of decision-making in presence of
frustration

Let G = (V,&,A) be a signed network whose node set V represents a community
of agents. To represent a process of decision-making for these agents, we consider
the following nonlinear interconnected dynamical model, previously used in [30,
31, 63],

&t =—-Ar+7mAY(z), zeR", (15)

where the state vector x € R™ represents the decisions of the agents and A € R"*"

is the adjacency matrix of the network G. Each element of the diagonal matrix A =
{01,...,0n} is given by &; =Y i, |aij’, i1=1,...,n, while 7 is a scalar positive pa-
rameter representing the “social effort” or strength of the commitment among the
agents. ¥(x) = [1(x1)...¢n(z,)]T are sigmoidal nonlinear functions. We assume
that each function ;(z;) : R — R is monotone, i.e., gﬁﬁz (x;) > 0Vax; € R, with unit

slope at the origin, gﬁl (0) =1, and saturated behavior: limg, 4.0 9;(z;) = £1.

From previous works, such as [31, 32], we know that the existence of equilibrium
points is determined by the social effort parameter 7: when 7 < 71 the origin is the
unique (and globally asymptotically stable) equilibrium point of the system (15).
When 7 = m; the system (15) undergoes a pitchfork bifurcation (i.e., the number
of equilibria “jumps” from one to three) and for 7 > 7 two alternative equilibrium
points * and —zx* appear, which are locally asymptotically stable, while the ori-
gin becomes unstable. Finally, when 7w = o the system (15) undergoes a second
pitchfork bifurcation and for 7 > me it admits multiple equilibria. In the context
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Threshold Structurally Structurally
values balanced G unbalanced G
= #1(@ =1, fixed grows with the

frustration €(G)

Ty = #2(11) depends on the algebraic  independent from the
connectivity of G, Aa(L) frustration €(G)

Table 3: Description of the bifurcation behavior of the system (15).

of social networks, where each equilibrium point corresponds to a possible deci-
sion made by the agents, the behavior of the system can be interpreted as follows:
when 7 < 71 the social effort of the agents is not enough to reach a nontrivial
decision. When 7 grows past the first threshold value 71, the higher strength of
commitment among the agents leads to two possible alternative decisions. Finally,
when m > w9, the “overcommitment” of the agents leads to a situation in which
multiple decisions are possible. We are interested in the case when 7 belongs to
the interval [0, ], since the agents have to choose among no nontrivial decision
(in [0,71]) and among two alternative nontrivial decisions (in [, m2]).

The threshold values 71 and 79 are functions of the two smallest eigenvalues
of the normalized signed Laplacian of the network, £L=1—-A"1A: 7 = #ﬂﬁ)
and my = ﬁg(/;) Moreover, at m = 7 the nontrivial equilibria +x* appear
on span{v1 (L)}, where v1(L) is the eigenvector relative to A\1(L), see [32]. The
values of A1(£) and A2(£L) depend not only on the network structure but also on its
signature: as explained in Section A.2, A\1(L) = 0, and consequently 7 is fixed and
constant to m = 1, if and only if the network G is structurally balanced. When this
is not the case, A1 (L) grows with the frustration of the network, implying that also
71 increases. This means that networks which are structurally unbalanced need a
higher social effort (71) from the agents in order to converge to a nontrivial decision.
Regarding m, its value depends on A2(L), which is the algebraic connectivity
of the network in the structurally balanced case. If the network is structurally
unbalanced, unlike A1 (L), A2(£) remains nearly independent from the frustration
of the network, i.e., even if €(G) grows, A\a(£) remains almost constant. This means
that the interval [m1,72] in which nontrivial decisions appear for the social effort
parameter 7 shrinks as the frustration of the network €(G) increases. These results,
shown in [32], can be summarized as in Table 3.

As introduced in Section A.1, each network Geountry considered in this work is
composed of n;, clusters, where np is the total number of parliamentary political
parties. Nonetheless, we still expect a behavior similar to the one described in
Table 3 for the first threshold value m; also for the party-wise frustration of the
network, whose definition was given in (14).

This can be shown with a numerical example, where we consider a network
Gg=V,&,A) with n = card(V) = 500 individuals and np, clusters, representing an
all-against-all scenario (scenario I), whose adjacency matrix A is hence a n, x np
block matrix described by (9), where w;; =1 for all i=1,...,n, and w;; = —1 for
alli,j=1,...,np and j #i. We decided to vary the number of parties and, for each
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np, to consider 1000 (unique) randomly selected vectors [c1,...,cp,] 8.t. ¢; € [1,7]
and 221 c¢; = n, where ¢; is the size of each party, i =1,...,np. Figure 9 shows the
results for n, = 3,4,...,20. Figure 9a illustrates how factors such as the number
of political parties and the size of each party i (¢;) influence the frustration: an
increase in the number of parties (np, left panel) or a decrease in the maximum
number of MPs per party (max;c;, right panel) both lead to an increase in the
frustration in average, although the variance is extremely large. Instead, Fig. 9b
shows that as the frustration of the network increases so does the threshold value
m1. As a consequence, a higher social effort will be required from the agents to
achieve a nontrivial decision.
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Figure 9: Numerical example of computation of the frustration as the number of
parties and of seats per party varies. (a): Party-wise frustration ¢ of the network
G vs number of parties (np) and vs maximum number of MPs per party (max;c;),
as the number of parties is changed and the number of seats per party is varied
randomly. The artificial networks we consider here are “all-against-all” networks
with np € {3,4,...,20} parties and size n = 500. (b): Behavior of 71 as a function
of the frustration ¢, as the number of seats per party changes randomly and np €
{3,6,10,20}.
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B Application: from parliamentary networks to
government formation

For a given country and general election, we aim to use our parliamentary networks
to predict:

1. The duration of the negotiation phase that leads to the formation of a post-
electoral cabinet.

2. The composition of the governmental coalition that sustains such a successful
post-electoral cabinet.

In both cases we are interested only in the cabinet that is being formed immediately
after a general election. Inter-election government formation processes are often
following different rules, see [5, 6].

B.1 Frustration vs government negotiation days

We are interested in the possible correlation between the frustration of each net-
work Geountry, measured by ¢ (formula (14)), and the numbers of days between the
election date and the date the government is sworn in. The rationale behind this is
that when no clear majority has emerged from the electoral ballot, there is uncer-
tainty in the composition of the candidate cabinet, and the political parties require
more time in order to overcome their differences and tensions if they want to es-
tablish coalitions which can ensure a majority in the parliament. Mathematically,
the link between the two properties is given by the dynamical model described
in Section A.3. Lack of a clear electoral winner corresponds to a parliamentary
network with high frustration index (.

In our model (15), a high frustration raises the value of the bifurcation point
71, meaning that achieving a nontrivial decision (i.e., giving a confidence vote to
a government) requires a high “social effort”, here interpreted as duration of the
negotiation process among the parties. A graphical representation can be seen in
Fig. 1c.

To check if this hypothesis is valid for our data, we compute the Pearson
correlation (1) between ¢ and the number of days between the general election
and the date the government is sworn in. The higher the value for » (which ranges
between —1 and 1), the “stronger” the evidence that frustration indeed influences
the dynamics of the government formation process. The resulting values are shown
in Fig. 2a.

B.2 Minimum energy government coalition

For each parliamentary network Geountry = (V,€,A), the energy landscape is ob-
tained by computing the energies in all the 2" possible block signature matrices
S =diag{S1,..., 5, }, with S; = s;I; and s; = £1 Vi. The party-wise frustration
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index is the minimum of such energies, as computed in (14). Denote
Shest :argmgne(S)
s.t. (1) S =diag{si-Ic),...,Sny Loy, }, 8i = E1,

i) > = > o (16)
1

i8;=+1 B8, =—

the block diagonal signature matrix (with more diagonal elements equal to +1
than —1) which gives the minimum of the energy functional, i.e., { = e(Spest)-
Consequently, —Spest is a block diagonal signature matrix with more diagonal
elements equal to —1 than +1; observe that e(—Shest) = €(Spest) = ¢. In the
paper, Spest is associated with “success” of a confidence vote to form a government
cabinet, and —Sheg to “failure”. Such ground state can in general be degenerate
(that is, several pairs £S5 may give the same frustration index ().

Let Shest = diag{s1 pest Legs -+ s Snp,best” Ie,, }. The two party sets {p; : $; best =
+1} and {p; : sipest = —1}, where p; is the i-th party, form a minimum energy
partition of the set P = {p;,¢ = 1,...,np} corresponding to (the positive and
negative diagonal elements of) the block diagonal signature matrix Spegt.

For the case of “success” (the vast majority of our data), the intuition is that
the set Phest := {pi € P : sipest = +1}, which corresponds to a majority coalition
of parties, should contain the possible new government coalition, plus the parties
that support it in parliament without officially participating to it. In other words,
Phest should be a superset of the set Pgoy = {p; € P : p; € gov}, i.e., the post-
electoral cabinet that actually took place.

Let Sgov = diag{s1 govle;,---, snpgovlcnp} be a block diagonal signature matrix
whose elements ; gov, @ =1,...,np, are defined as follows,

s, _ +1, pi € Pgov
ey -1, piépgow

To evaluate how our predictions (Spest) reflect the actually formed government,
we introduce the following indexes:

— Card(Pbest N ?gov)
Pgov card(Pgov)

_ e(Sgov) —¢
gov =1 maxge(S)— ¢’

(17)
(18)

The closer the value of pgoy is to 1, the better our estimate represents the actual
cabinet composition. ng., represents instead how close “energetically” our guess
(i.e., ¢) is to the true government energy e(Sgov). In (18), e(S) and ¢ are given
by (13) and (14) respectively, e(Sgov) is the energy in correspondence of Sgoy, and
S in e(S) is used as in (14) to indicate a signature matrix with np blocks, i.e.,
S = diag{sllcl,...,snplcnp}7 s; = +1 Vi.

As already mentioned, several +Spe may give the same frustration index
¢ (i.e., the ground state is degenerate). Moreover, among those, there might
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exist signature matrices Spesy determining party sets {p; € P : 8;pest = +1}
and {p; € P: s;pest = —1} with equal total number of seats, Zi:si,best:+1 ci =
Dits; pes=—1Ci = 5 (equality holds in (16)(iéi)). We consider the latter as inconclu-
sive cases, meaning that our analysis is not able to identify the possible government.
More specifically, these issues are handled as follows.

1. In presence of multiple Syeq; and multiple valid values for pgov, we consider the
signature matrix Spegt giving maximum possible value for pgoy.

2. In presence of multiple Spest all representing inconclusive cases for the analysis,
we define S}, = diag{sll,best'101v~"75/np,best'16np} as the signature matrix giv-

ing minimum possible energy while satisfying a “non-inconclusive” condition,

Zz st 416G > Zi:s’. =—1%, that is

i,best i,best

St est :argmsin e(S)
s.t. (z) S =diag{sile,,...,Snylcn, }s 8 =

Z c > Z G- (19)

B8, =41 B8 =—

Then, Ppest :={p; €P: S;,best =+1} If S{)est is degenerate, we follow point 1.

Fig. 15 illustrates how often degenerate or inconclusive cases occur in scenario I.

B.3 Frustration vs smallest eigenvalue of the normalized signed
Laplacian

Our analysis is based on two observations. The first, already mentioned in Sec-
tion A.3, is a well-studied fact from the literature [32, 37, 61], namely that the
smallest eigenvalue of the normalized signed Laplacian (A;(L£)) grows linearly
with the frustration of the network (¢). The second is that there is a high over-
lap between the signature of the eigenvector relative to A1(£) (vi(£)) and the
signature matrix corresponding to the ground state, which we denote Spest =
diag{silc,,...,sn,1c,, }, i = £1 (16). Notice that since the adjacency matrix of a
parliamentary network is a block matrix, see (9), then v;(£) is also a block vector,
UIVHE(URE FARUES FAREERUINS FA kS

To check 1f the ﬁrst hypothesm holds for our data, we calculate the Pearson
correlation between the smallest eigenvalue of the normalized signed Laplacian,
A1(L), and the frustration of the parliamentary networks, (. To check if the
second assumption is satisfied, we calculate the overlap between 4S5y and the
signature of v1(L), defined as

Isign (v1(£)) = Shestlls | [lsign (v1(£)) + Svestlr } 100
n n

% overlap = max { 1—

)

n n

_ max{l X clsign (o) =iy Bk ilign () o }-100, (20)

where n = 3., ¢; is the total number of MPs and |-||1 indicates the 1-norm.
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The average values of correlation between A\(L) and the frustration of the
parliamentary networks ¢, and the average overlap (20) between Speq; and the
signature of v1(L) (the eigenvector related to A\1(L)) are reported in Table 4 for
each scenario (I, I, ITI).

Scenario  Correlation between Overlap (average) between

A1(£) and frustration Spest and sign (vy (L))
I 0.956 88.31 %
11 0.939 98.12 %
ITI 0.904 97.69 %

Table 4: Frustration vs smallest eigenvalue of the normalized signed Laplacian for
scenario I, II, III. Left column: average correlation between the frustration of
the parliamentary networks ¢ and the smallest eigenvalue of the normalized signed
Laplacian A1(L£). Right column: average overlap between Spest and the signature
of v1 (L), the eigenvector associated to A\1(L), as defined in equation (20).

B.4 Frustration vs fractionalization index

As shown in previous studies such as [5, 8] (and as intuitively clear), parliamentary
fragmentation is one of the main factors influencing the duration of the govern-
ment negotiation process. Such fragmentation is often measured in terms of the
Laakso-Taagepera effective number of parties [11], or in terms of the strictly re-
lated fractionalization index [12]. In this section we investigate (analytically) how
the frustration of the signed parliamentary networks (of scenario I) is related to
the fractionalization index (which carries the same information of the effective
number of parties).

The effective number of parties (denoted N2) is defined as the inverse of the sum
of squares of the shares of seats of each party, see (3), while the fractionalization
index (denoted F') is defined as F =1 — Ni2

To compare the frustration of the signed networks to these indexes, we first need
to rewrite the expression of the weighted energy functional e(.S), see (13), by taking
into consideration that the parliamentary networks, as introduced in Section A.1
and represented by Geountry, can be partitioned in ny clusters (corresponding to
the political parties), each of size ¢; (i = 1,...,np). Indeed, this means that the
adjacency matrix A (see (9)) and the diagonal matrix A = diag{|A|1} (introduced
in Section A.2) are block matrices. In particular, A = diag{di/¢,,...,0n,1c,, }
where each block &;1,, i € Z:={1,...,np}, satisfies

((51'161.)]1@1. = Z ‘A@]| ]lcj = Z |wij|Ecic]-]lcj + (Eci - Ici)]lci = (Z ‘wij|cj — 1)]161..

JET JET JET
J#i

Then the weighted energy functional e(S), where S = diag{s1I¢,, ..., sn, lc,, } With
s; = x1 VieZ, can be rewritten as follows:

1 _ 1 CiCs
B(S):i]lz;A 1(|A|—SAS)]1TL:§ Z 5J(|ww|—slw”5]), (21)
ijer '
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where w;; is the weight between the i-th and j-th party.
In scenario I all party-party weights are negative and equal to —1 (w;; = —1
for all j #1), which implies that §; =n —1 for all i € Z and that (21) becomes

1 1
2(n—1) > cicj(1+sisj) = — > g
1,jEL, j#1 i,tjEI,jizb
s.t. 5455

e(S) =

Let Cxy ={i€Z:s;=+41} and C_ ={i € Z: s; = —1} be the two node subsets
defined by a signature matrix S = diag{si /I, ,..., Snplen, },and let nc, = Ziec+ G
and ne_ = Y ;ce_ci- Notice that C; NC— = () and that n¢, +nc_ = n. Then,
the calculation of the frustration of a signed parliamentary network in scenario I
reduces to

1 . 1 .
=—- min cic; = ——- min C;iCi CiCi
< n—ldiag{sl.‘.sn}v,zllz] n—1 C+QI{.Z iCj + Z ZJ}
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Equation (22) shows that the frustration of the signed networks of scenario I is
proportional to the difference between the fractionalization index F' and a term
which is related to the size of the minimum winning coalition. To obtain some
insight on the frustration of scenario I (and in particular on the first term of
equation (22)), let Ppest be the solution of the minimization - or, maximization,
depending on the sign - problem in (22) (see also Section B.2) and np, , = 5 +
Eyest where Epegt € [0, 5] is the number of seats in excess (with respect to 50% of
the total number of seats). Then the frustration (up to a constant multiplicative
term) can be written as (4).

In conclusion, equation (4) shows that the frustration of the signed parlia-
mentary networks of scenario I is proportional to the frustration index F' and
to the “distance” of the the majority Ppest (in correspondence of minimum win-
ning coalition Spest) to 50% of the total number of seats. Figure 16 shows the
linear regression plots between the fractionalization index and the frustration of
the parliamentary networks for each country and election. The average value of
correlation is 0.99 (see Fig. 2d). Moreover, Fig. 16 shows that countries with a
lower value of correlation (such as Albania, North Macedonia, Moldova, UK) are
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characterized by minimum winning coalitions Spest Wwith higher excess of seats
Ebest-

B.5 Description of the results

A summary of the results obtained for all the scenarios mentioned in Fig. la, in
terms of correlation between duration of government negotiations and frustration,
indexes evaluating how good our estimates of the cabinet composition are, and
correlation between fractionalization index and frustration is given in Fig. 2.

For scenario I, the number of government negotiation days and the frustration
for each country are shown in Fig. 10a and Fig. 10b, respectively. The percent-
ages of correct government predictions, in terms of pgoy and 7gev, are given in
Fig. 10c and Fig. 10d, respectively. Fig. 11 shows the energy functionals for each
country and election year; the red line represents the energy corresponding to the
government coalition, e(Sgov)-

Regression plots (see Section B.6 for more details on the linear regression anal-
ysis) between the government negotiation days and the frustration of the parlia-
mentary networks with the corresponding values of correlation are shown in Fig. 3,
Fig. 12 and Fig. 13, respectively for scenario I, IT and III.

The correlation Tcountry computed for each country and scenario, between the
duration of coalition negotiations and the party-wise frustration of the network, is
given in Fig. 2a: overall, the values of correlation for all scenarios are positive and
above 0.4 with few exceptions which often admit a clear explanation and will be
discussed in Section B.7. In scenario IIT we consider 10000 different values for the
political positions (fixed in time: the same for all elections) in the left-right scale,
as explained in Section A.1: for each country, the “optimal” choice of positions is
identified as the one giving the best value of correlation, depicted in Fig. 8¢ with
a blue circle. This value is then used in Fig. 2 (scenario III) and Fig. 13. As
can be seen in Fig. 8c, the positions we assign to the left-right grid significantly
affect the correlation, hence the optimal reountry may be far from the average of
the correlations obtained for each country. This could also explain why the results
obtained in scenario II are worse, in terms of correlation, than the ones obtained
in scenario I, where the networks we consider are unweighted.

B.6 Influential points of the regression are important

Consider the “frustration vs. days” regression plots for a country (depicted in
Fig. 3, Fig. 12 and Fig. 13 for scenarios I, IT and III), and let Zqate and yqate be,
respectively, the party-wise frustration of the network Geountry and the duration of
coalition negotiations after the election specified by “date”. We say that a point
(Zdate; Ydate) is an outlier for that country if the value of yqate does not follow the
linear regression line, meaning that this value is unusual given zg,t.. Instead, it is
a high leverage point if it has “extreme” z4,te value, i.e., this value is unusual given
Ydate- Finally, we say that the point is influential if it influences the slope of the
regression line. See [64, 65] for a detailed explanation of outliers, high leverage and
influential points. Tests such as residuals, leverage and delete-1 statistics are used
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to identify the possible outliers, high leverage and influential points. In practice,
given the linear regression model, outliers are observations whose studentized (also
denoted externally studentized or studentized deleted) residuals are greater than 3
in absolute value and whose standardized (or internally studentized) residuals are
greater than 2 in absolute value. Observations whose leverage statistics have values
greater than QWP, where p = 2 is the number of regression coefficients and N is the
total number of observations (in this case the number of elections considered for
each country), are identified as high leverage. Finally, observations whose Cook’s
distance is greater than three times the average Cook’s distance, and whose Dffits

(Difference in fits) values are greater than 2,/ 4%, are identified as influential points.

We are particularly interested in observations marked as outliers and as both
high leverage and influential, because they often represent unexpected events or
difficult situations, in terms of either frustration or government negotiation dura-
tion, or both. In the vast majority of cases indeed they correspond to both high
frustration and long negotiation times.

B.7 A brief discussion on national rules and traditions
influencing the duration of the government negotiation
talks

It is beyond the scope of this paper to make a thorough analysis of the additional
factors influencing the duration of coalition negotiations, and we refer the reader
to [9, 50, 66, 67]. However, to shed some light on the systematic differences in
the government negotiation times across the various countries (see Fig. 10a), it is
worth mentioning that the countries characterized by “negative” parliamentarism
tend to have short cabinet formation processes. We say that a certain country has
“negative” parliamentarism if the government (in order to rule) does not need to
win a vote of confidence in the Parliament (as in the UK), or if the majority of
the parties does not vote against it in the Parliament (as in Sweden), while it has
“positive” parliamentarism otherwise [67]. The presence of minority governments
and, most importantly, average short government formation processes is related
to countries having “negative” parliamentarism: for instance Denmark, Finland,
Iceland, Norway, Sweden and United Kingdom, see [5, 66, 67] and Fig. 14b.

In other countries the duration of the negotiation period is defined (and limited)
by the constitution. It is worth observing that Estonia and Greece, two of the three
countries showing a negative correlation between frustration and negotiation days
in our scenario I and II, are among them. In Estonia, according to Article 89
of the Constitution, a limited time is given to the candidate Prime Minister to
form a new Government: the President has 14 days to appoint a candidate Prime
Minister, who in turn has to win a confidence vote in not more than 24 days.
In case of failure the President can nominate (within 7 days) another candidate
and the procedure repeats. Again, in case of failure, the Parliament nominates a
candidate who has 14 days to win a vote of confidence. For Greece, as Article 37
of the Constitution states, the leader of the party with relative majority receiving
from the President of the Republic the task to form a coalition (that has to enjoy
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the confidence of the Parliament) has 3 days to succeed. In case of failure, the task
is given to the leader of the second, and then third, largest party in the Parliament.
If all the rounds of government negotiations fail new elections are called.

B.8 A brief discussion on elections resulting in a hung
parliament

It is interesting to describe in some detail some cases of hung parliament mentioned
in Section 3, whose corresponding data points in Fig. 3 (for scenario I, Fig. 12 and
13 for scenarios II and III) are both influential and high leverage points.

The 2006 Czech election saw a perfect partition of the parliament into parties of
the left, Czech Social Democratic Party (éSSD) and Communist Party of Bohemia
and Moravia (KSCM) (that together won 100 of the 200 seats), and centre-right
parties, Civic Democratic Party (ODS), Green Party (SZ) and Christian and Demo-
cratic Union - Czechoslovak People’s Party (KSU-CSL) (that collectively won the
other 100 seats) [68]. In our framework, a parliament split into two identical halves
represents a degenerate situation which escapes classification: the frustration can
be very low but no majority exists. Indeed in our method the partition mentioned
above corresponds to the ground state, i.e., our Sy consists of exactly 50% of
+ and 50% of —. The duration of the negotiation process cannot be predicted in
degenerate cases like this because the two “real-life” equal size factions are also
matching ideological polarization.

The 2016 and 2020 elections in Ireland, unlike the previous elections, resulted
in no clear majority (or possible government coalition) and produced instead the
most fragmented D4ils in history (which explains the higher levels of frustration):
the number of parties in the parliament increased to 12 (from an average of 8 in
the previous elections) and, while in the previous elections the percent distance
between the first two parties (i.e., difference between their shares of seats in the
parliament) had been at least of 19%, in the following elections it decreased, with
the two biggest parties differing by as little as 3.2% in 2016 and 2.3% in 2020.
However, differently from the 2016 election, in the 2020 election three parties
(Fianna F4il, Sinn Féin, Fine Gael) won roughly the same number of seats, which
is reflected in a fractionalization index (or effective number of parties, see (3)) for
the 2020 election higher than the one for the 2016 election: this meant that, for
the first time, at least three parties were needed to form a majority coalition [69].
After the 2016 election, most of the parties did not want to participate in the
government coalition and after 70 days of negotiations a “confidence and supply”
deal was signed between Fine Gael and Fianna Fail, with Fianna F&il abstaining
from voting against Fine Gael [70], while after the 2020 election, both Fine Gael
and Fianna Fail did not want to collaborate with Sinn Féin and decided instead
to form a grand coalition with the Green Party.

In Spain, after the 2015 general election no agreement was reached between the
parties before the deadline imposed by the Article 99 of the Spanish constitution
(corresponding to two months from the first vote for investiture). A snap election
was then called in June 2016 and after 131 days the Rajoy II government, composed
by members of the People’s Party (PP) and independents, was sworn in. Single-
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party (minority) governments have always been common in Spain, however these
elections saw a change from a nearly two-party system, i.e., majority of votes
won by two parties, PP and Spanish Socialist Workers’ Party (PSOE), to an
effectively multi-party system [71] which increased the complexity of the cabinet
formation process. Similarly, the government negotiations failed after the April
2019 legislative election, and the King had to call new elections in November 2019,
which gives us a second “failure point” for Spain.

In 2017 in Germany 171 days passed from the election date before the Merkel
IV cabinet was sworn in. Neither of the possible coalitions, Christian Democratic
Union/Christian Social Union in Bavaria (CDU/CSU) and Free Democratic Party
(FDP) or Social Democratic Party (SPD) and The Greens (GRUNE), obtained
a majority of seats in the parliament, while a new party, the far-right Alterna-
tive for Germany (AfD), managed to enter the parliament for the first time [72].
Since none of the parties wanted to collaborate with AfD, a compromise between
parties with different ideological views had to be found: after a failed attempt to
form a “Jamaica Coalition” (CDU/CSU, GRUNE and FDP) the new government
comprised a grand coalition between CDU/CSU and SPD.

B.9 A brief discussion on elections where the government
negotiations failed

In our analysis of government formation, most of the legislative elections (255 out
of 260 elections) are followed by successful cabinet negotiation talks, after which
a cabinet is approved by the parliament and sworn in. In three countries, Czech
Republic, Greece and Spain, we found however instances of failure of the govern-
ment negotiation talks, in the form of a failed vote of investiture or expiration of
the deadline set by the Constitution.

In the Czech Republic the candidate government needs to pass an investiture
vote (of simple majority) within 30 days after its appointment (Article 68 of the
Czech Constitution). In 2006, Topoldnek (leader of ODS) decided to form a minor-
ity government even without managing to secure support from the other political
parties [68]. Topoldnek’s first cabinet was sworn in on September 4 but lost a
confidence vote on October 3, and cabinet negotiations had to restart. The dead-
lock was broken only after 220 days, thanks to the abstention of some MPs from
CSSD, and the Topoldnek IT cabinet (centre-right coalition of ODS, SZ and KSU-
CSL) was sworn in [68]. A similar situation (failure and then success at the same
election) occurred again in the 2017 Czech election. In 2017, none of the political
parties wanted to cooperate with Babis due to the criminal fraud charges he was
facing [73] and the Babis first cabinet (ANO 2011 only), formed on December 13,
failed to pass an investiture vote on January 16. In the cabinet negotiations that
followed, ANO 2011 managed to reach a coalition agreement with CSSD and to
obtain external support from KS(]M, and after 249 days the Babis second cabinet
was sworn in.

In Greece after the May 2012 legislative election none of the three leaders tasked
to form a government managed to negotiate a cabinet coalition and, following the
Article 37 of the Greek Constitution (see also Section B.7), 10 days after the
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election day a caretaker cabinet was appointed and new elections were announced
for June.

In Spain, see Article 99 of the Spanish Constitution, if the candidate govern-
ment does not succeed in obtaining the confidence of the parliament (i.e., if it loses
both a first vote of absolute majority and, 48 hours after, a second vote of simple
majority) then a new candidate cabinet can try to obtain the confidence of the
parliament. If within two months after the first vote for investiture no cabinet has
managed to win a vote of confidence, the King can call new elections. After the
2008,2016 and November 2019 elections the candidate cabinets managed to win
the confidence of the parliament (with a vote of simple majority) while, after the
2015 and April 2019 elections, the government negotiations failed and the King
had to call new elections.

For each of these three countries, Fig. 14a reports the election dates, the gov-
ernment sworn in dates and the government negotiations failure dates, determined
for the Czech Republic as the date the cabinet (which later failed to pass the in-
vestiture vote) was formed, for Greece as the date the caretaker cabinet was sworn
in, and for Spain as the date corresponding to two months after the first vote for
investiture.

Figure 3 plots the duration of the government negotiation talks (calculated
as number of days between the election date and the sworn in date and denoted
days, see Fig. 14a) vs the frustration of the parliamentary networks, for scenario I
(scenario IT and IIT are reported respectively in Fig. 12 and Fig. 13). For Czech
Republic, Greece and Spain, the blue data points (and corresponding regression
line and value of correlation) correspond to elections followed by successful votes
of investiture (the May 2012 Greek election and the 2015 and April 2019 Spanish
elections are hence excluded), while the yellow data points (and corresponding re-
gression line and value of correlation between parentheses) include all the elections:
in this case the variable days indicates the number of days between the election
date and the government negotiations failure date (see Fig. 14a).

B.10 Analysis of the type of governments formed after the
elections

We distinguish between four types of governments (two being minority govern-
ments, two majority) that may be formed after a legislative election: first, we
consider minority governments where the cabinet coalition has a strict minority
in the parliament; second, minority governments whose coalition of parties holds
exactly half of the seats in the parliament; third, majority governments which
are minimal winning coalitions; and last, majority governments which are surplus
coalitions. A coalition of parties is minimal winning if removing a party implies
loss of majority in the parliament [2], and it is denoted surplus otherwise.

Fig 14b shows the type of government the countries we have considered in our
analysis have formed: of 257 analyzed governments, 61 (23.74%) are minority, 5
(1.95%) are cabinet coalitions holding exactly 50% of the seats in the parliament,
131 (50.97%) are minimal winning, and 60 (23.35%) are surplus coalitions.

In Scenario I, computing the frustration is equivalent to find the minimum
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winning coalition (represented by the group of parties achieving majority in Spest),
that is, a coalition of parties that is minimal winning and also minimizing the
functional e(S), meaning that between all possible minimal winning coalitions it
is the one with the lowest amount of total MPs. The expectation that governments
should be minimal winning is standard in the literature [2, 5], even if it has been
recently observed that, in reality, it is not uncommon for minority or surplus
governments to form [74, 75].

B.11 Analysis of the Italian bicameral parliamentary system

Under the bicameral system of Italy the candidate cabinet needs to win the con-
fidence of both the Chamber of Deputies and the Senate of the Republic [76]. In
what follows we extend the results obtained for the Chamber of Deputies by con-
sidering also the network described by the parties winning seats in the Senate of
the Republic.

For each election let G and Gy indicate the signed networks of the lower and
upper chamber, respectively, and let the party set be defined as P = P.UPs, where
Pe = {p; : p; € Chamber of Deputies} and Ps = {p; : p; € Senate of the Republic}.
For each subset P(S) of P described by the party configuration S = diag{si,...,
Scard(P)}, Where s; = 1 if the party p; belongs to the subset P(S) or s; = —1
otherwise, we define the energy of the configuration S as the couple [ec(S¢), es(Ss)],
where Sg (resp., Ss) and eq(Sc) (resp., es(Ss)) indicate the corresponding party
configuration and energy functional (13) of the network G¢ (resp., Gs), that is

SX = diag{sllcl geany Scard(PX)ICcard(PX)}

5 = +1, pi € PX ﬂP(S’) xe {C’S},
-1, piePx\(PxNP(S))

where ¢; is the number of seats won by party p; (correspondingly in the Chamber
or the Senate), and

1
ex(5x) = B Z[|£(QX)| + 5% L(Gx)xlij,  x€{c.s},
i,j#i
where £(Gx) indicates the normalized signed Laplacian of the network Gx. We
say that a party configuration S is a majority configuration if its parties hold the

majority of seats in both chambers of the parliament, that is, if Zi:piE'PcﬁP(S) c; >

% and Zi:piePsﬂP(S ¢ > %, where 630 and 315 are the total number of seats

in the Chamber and Senate, respectively.
For each election, the energy of all configurations S is depicted in Fig. 6, which
shows the values eg(Ss) vs eq(Se).
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Figure 10: (a): Number of days of government coalition negotiations for each coun-
try and election. (b): Party-wise frustration for each country and election in scenario
I. (¢): pgov, summary for each country and election. (d): ngov, summary for each
country and election. Left panels in (c), and (d): corresponding histograms. A
colormap is used to differentiate data from different years.
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Figure 11: Energy landscape for scenario I and for each country, i.e., values of the
energy e(S) (see (13)) as S =diag{silcy,...,8nplen, }» i = %1, is varied: the value
of the energy functional corresponding to the government, e(Sgov), is highlighted
with the red line, while the minimum of the energy functionals, e(Shegt) = ¢, is
indicated with the blue dot.
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Figure 12: Scenario II. Frustration of the parliamentary networks v.s. duration of
the government negotiation talks (days) and corresponding linear regression line, for
all countries of Table 2. The value of correlation (r) for each country is reported
in the plot heading. Legend: blue circles represent points that are neither outliers,
nor high leverage nor influential. A red symbol indicates an outlier, a triangle a
high leverage point and a symbol with green outline an influential point. Residual
analysis, leverage statistic and delete-1 statistics are used to identify outliers, high

leverage and influential points, respectively.

Yellow square data points indicate

elections corresponding to failure of government negotiations resulting in votes of no-
confidence (Czech Republic in 2006 and 2017) and new elections (Spain in December

2015 and April 2019, Greece in May 2012), see Fig. 14a.

Blue regression lines

consider only the successful government formations. Including also the failure points
we obtain the yellow regression lines.
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Figure 13: Scenario III. Frustration of the parliamentary networks v.s. duration
of the government negotiation talks (days) and corresponding linear regression line,
for all countries of Table 2. The value of correlation (r) for each country is reported
in the plot heading. Legend: blue circles represent points that are neither outliers,
nor high leverage nor influential. A red symbol indicates an outlier, a triangle a
high leverage point and a symbol with green outline an influential point. Residual
analysis, leverage statistic and delete-1 statistics are used to identify outliers, high
leverage and influential points, respectively. Yellow square data points include also
elections corresponding to failure of government negotiations resulting in votes of no-
confidence (Czech Republic in 2006 and 2017) and new elections (Spain in December
2015 and April 2019, Greece in May 2012), see Fig. 14a. In these 3 countries all edge
weights have been recomputed (hence frustration values are different with respect to
the blue data points). Blue regression lines consider only the successful government
formations. Including also the failure points we obtain the yellow regression lines.
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Country Date N. of Days
election failure Sworn-in

Czech Republic | 2006-06-03 2006-09-04 2007-01-09 | 93 (failure), 220 (success)

2017-10-21  2017-12-13  2018-06-27 | 53 (failure), 249 (success)
Greece 2012-05-06  2012-05-17 = 11 (failure)
2012-06-17 - 2012-06-21 4 (success)
Spain 2015-12-20  2016-05-03 - 135 (failure)
2016-06-26 = 2016-11-04 131 (success)
2019-04-28  2019-09-24 - 149 (failure)
2019-11-10 - 2020-01-13 64 (success)
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Figure 14: (a): Legislative elections related to failure of government negotiation
talks in Czech Republic, Greece and Spain. (b): Type of government coalition
formed after the election (minority, minority but yielding exactly half of the seats
in the parliament, minimal winning, surplus), for each country of Table 2. Observe
that to be classified as “majority” a cabinet coalition needs to hold (strictly) more
than half of the seats in the parliament.
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Figure 15: Scenario I. Elections for which the ground state (Spegt) is “degenerate”
(purple, orange, green) and not “degenerate” (light gray). Left panel: cases in which
the ground state (Spest) is “degenerate” for each country and election; Right panel:
percentage of elections for which the ground state is “degenerate”, for each coun-
try. Legend: gray stars are used to represent cases where the ground state is not
“degenerate”. We consider three different “degenerate” cases: (1) multiple signature
matrices Shegt give the same value of frustration but there exists a Syesy Whose
corresponding group of parties holds a majority of seats in the parliament (purple
squares); (2) multiple signature matrices Sy gt give the same value of frustration and
all corresponding party groups hold exactly half of the seats (50/50) in the parlia-
ment (orange circles); (3) unique signature matrix Sy,oq Whose corresponding party
group holds exactly half of the seats (50/50) in the parliament (green diamond).
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Figure 16: Scenario I. Fractionalization index vs frustration of the parliamentary
networks and corresponding linear regression line, for all countries of Table 2. The
value of correlation (1"<7 ) for each country is reported in the plot heading. Inset:
distance of the minimum winning coalition Spegt to 50% (of the total number of

B, . .
seats), calculated as -2est where Epegt, is the number of seats in excess of Spest (see

Section B.4). In all panels black squares indicate minimum winning coalitions Spegt
whose distance from 50% is greater than 5%.
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Figure 17: Leave-the-last-one-out analysis and linear regression plots between the
duration of the government negotiation talks (days) and the frustration of the par-
liamentary networks in scenario ITI, for all countries. The last election (red circle)
is used for the validation set while the remaining elections (yellow squares) are used
to calculate the optimal choice of political positions in the left-right grid (see Fig. 4).
A yellow dashed line represents the regression calculated on the first N —1 elections,
while a red dotted line the regression calculated on all elections. The corresponding
values of correlation r are reported in the plot heading.
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Abstract

The pseudoinverse of a graph Laplacian is used in many applications
and fields, such as for instance in the computation of the effective resis-
tance in electrical networks, in the calculation of the hitting/commuting
times for a Markov chain and in continuous-time distributed averaging
problems. In this paper we show that the Laplacian pseudoinverse is in
general not a Laplacian matrix but rather a signed Laplacian with the
property of being an eventually exponentially positive matrix, i.e., of
obeying a strong Perron-Frobenius property. We show further that the
set of signed Laplacians with this structure (i.e., eventual exponential
positivity) is closed with respect to matrix pseudoinversion. This is
true even for signed digraphs, and provided that we restrict to Lapla-
cians that are weight balanced also stability is guaranteed.

1 Introduction

For a network or a networked system, the Laplacian matrix is a fundamental object
that captures information about e.g., connectivity and spectrum [2, 3], as well as
properties of the dynamics that live on the graph [4-7]. Associated to the Laplacian
is also a Laplacian pseudoinverse, typically a Moore-Penrose pseudoinverse, which
has also been used extensively to describe graph-related quantities. For instance
it is used to build an effective resistance matrix for the graph, a distance measure
that exploits the analogy between graphs and electrical networks [8-10], and to
compute hitting/commuting times in Markov chains [11-14]. It is also used to
estimate the 72 norm in networked dynamical systems [15-17].

If we consider a graph with nonnegative edge weights, it is well-known that the
Laplacian L is an M-matrix (i.e., a matrix with nonpositive off-diagonal entries,
such that —L is marginally stable, see below for proper definitions). It is also easy
to show that the Laplacian pseudoinverse does not belong to the same class, not
even when the graph is undirected. Consider for instance the following Laplacian
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matrix
0.8 —-0.7 -0.1

L=1|-07 09 -02
-0.1 -0.2 0.3

Its pseudoinverse is

0.773  0.048 —0.821
LT=10048 0628 —0.676
—0.821 —0.676 1.498

which has an anomalous sign in the (1,2) entry, even though it has the same
stability properties of L.

The aim of this paper is to investigate the algebraic properties of Laplacian
pseudoinverses. Even though LT is not an M-matrix, it has nevertheless most of
the properties of M-matrices, most notably it obeys to a strong Perron-Frobenius
property: the pair formed by the eigenvalue 0 and eigenvector 1 = [1---1]T is
the “dominant” eigenpair for —L* (just like it is for —L) in spite of the pres-
ence of positive off-diagonal entries in L. Such matrices are called eventually
exponentially positive in the linear algebra literature [5, 18-20]. We show in the
paper that this argument can be extended to signed Laplacians, i.e., Laplacians
associated to signed digraphs': the pseudoinverse of an eventually exponentially
positive signed Laplacian is an eventually exponentially positive signed Laplacian.
In other words, the class of eventually exponentially positive signed Laplacians is
closed with respect to pseudoinversion.

Under the assumption of edge weight balance, such class is also closed with
respect to stability, i.e., —L and —L' eventually exponentially positive are also
marginally stable (and of corank 1).

When we restrict further the class from weight balanced L to normal L, then
it coincides also with the class of Laplacians and Laplacian pseudoinverses whose
symmetric part is positive semidefinite of corank 1. Such restriction is particularly
useful in the context of effective resistance, which, being a distance, has to be
symmetric. For normal signed Laplacians we obtain a natural way to extend the
notion of effective resistance to digraphs, alternative to the definitions already
appeared in the literature, see e.g. [22].

2 Preliminaries

2.1 Linear algebraic preliminaries

Given a matrix A = [a;;] € R"*", A > 0 means element-wise nonnegative, i.e.,

a;; > 0 for all 4,5 =1,...,n, while A >0 means element-wise positive, i.e., a;; >0
for all 4,5 = 1,...,n. The spectrum of A is denoted A(A) = {A1(4),..., \n(A)},
where \;(A),i=1,...,n, are the eigenvalues of A. In this paper we use the ordering

Re[A1(A)] < Re[A2(4)] < --- < Re[M,(4)], where Re[\;(A)] indicates the real part

1As signed Laplacian here we use the so-called “repelling Laplacian” in the terminology of
[21], see Section 2 for a precise definition.
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of A\j(A). The spectral radius of A is the smallest real nonnegative number such
that p(A) > |\;(A)| for all i =1,...,n and N\;(A) € A(A). A matrix A is called
Hurwitz stable if Re[A,(A)] <0, and marginally stable if Re[A,(A)] =0 is a simple
root of the minimal polynomial of A.

A matrix A is called positive semidefinite (psd) if 27 Az = xT#x >0Vze
R™ and it is called positive definite (pd) if 27 Az = xT#x >0 Ve e R™\ {0}.

A matrix A is called irreducible if there does not exist a permutation matrix
P s.t. PTAP is block triangular.

A matrix B is called a Z-matrix if it can be written as B = sI — A, where A >0
and s > 0, and it is called a M-matrix if, in addition, s > p(A4), which implies
that all the eigenvalues of B have nonnegative real part. If s > p(A) then B is
nonsingular and — B is Hurwitz stable. If s = p(A) then B is singular, and if A is
irreducible then —B is marginally stable.

If A is a singular matrix, the Moore-Penrose pseudoinverse of A, denoted Af,
is the unique n x n matrix that satisfies AATA=A, ATAAT = AT (ATA)T = ATA,
and (AAT)T = AAT. A singular matrix A is said to have index 1 if the range
of A, range(A), and the kernel of A, ker(A), are complementary subspaces, i.e.,
range(A) Nker(A4) = (). For index 1 singular matrices, the Drazin inverse and
the group inverse coincide. A singular M-matrix has always index 1 [23]. A
matrix is normal if it commutes with its transpose: AAT = AT A. A matrix A is
said an EP matriz (Equal Projector, also called a range symmetric matriz [23])
if ker(A) = ker(A”) (and hence range(A) = range(A”)). EP matrices generalize
normal matrices, and like normal matrices have many equivalent characterizations,
see [23]. For instance an EP matrix A is such that A commutes with its Moore-
Penrose pseudoinverse Af. If A is an EP-matrix, then 3U orthogonal such that

o 0]
a=ufy olv

with B nonsingular of dimension r = rank(A). Singular EP matrices have index 1,
and for them the Moore-Penrose pseudoinverse, the Drazin inverse and the group
inverse coincide.

2.2 Signed graphs

Let G(A) = (V,E,A) be the (weighted) digraph with vertex set V (card(V) = n),
€ =V xV and adjacency matrix A = [a;5] € R"*™: a;; € R\ {0} iff (j,7) € £.
Since each edge of the digraph is labeled by a sign (i.e., sign (aij) ==1), G(A) is
called a signed digraph. In the particular case where A > 0, the digraph G(A) is
called nonnegative. For digraphs G(A) which are strongly connected and without
self-loops, the matrix A is irreducible with null diagonal.

The weighted in-degree and out-degree of node i are denoted 5%“ = Z;‘:l a;j
and 09" =37 aji, respectively. The (signed) Laplacian of a graph G(A) is the
(in general non-symmetric) matrix L = A — A where A = diag{6i",...,5i"}. This
definition of signed Laplacian corresponds to the so-called “repelling Laplacian”
in the terminology of [21]. By construction, this Laplacian is a singular matrix
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with ker(L) = span{l} where 1 € R" is the vector of 1s. However, —L need
not be marginally stable and its symmetric part Ls = L+2LT need not be positive
semidefinite, as we show in the examples in Section 3. Moreover, L irreducible (or,
G(A) strongly connected) need not imply corank(L) = 1. For instance, consider a

complete, undirected, signed graph G(A) whose Laplacian is

3 -1 -1 -1
-1 1 1 -1
-1 1 1 -1
-1 -1 -1 3

L=

It is A(L) ={0,0,4,4} and 1,[0,1,—1,0]" € ker(L), i.e., L is marginally stable of
corank 2. Similarly, corank(L)1 need not imply L irreducible.

A digraph G(A) is weight balanced if in-degree and out-degree coincide for each
node, i.e., 5" = doipaiy =D g aji = 69Ut for all ¢ = 1,...,n. As we show in
Lemma 2, corank(L) =1 and L weight balanced imply L irreducible.

2.3 Eventual exponential positivity

Definition 1. A matrix A € R™*™ has the (strong) Perron-Frobenius property if
p(A) is a simple positive eigenvalue of A s.t. p(A) > |\(A)] for every A\(A) € A(A),
A(A) = p(A), and x, the right eigenvector relative to p(A), is positive.

The set of matrices which possess the Perron-Frobenius property will be de-
noted PF, and it is known (see e.g. [24, Thm 8.4.4]) that irreducible nonnegative
matrices are part of this set. However, it has been shown (see [18]) that matrices
having negative elements can also possess this property, provided that they are
eventually positive.

Definition 2. A matrix A € R"*" is called eventually positive (denoted A 3 0)
if 3ko € N s.t. AF >0 for all k> ko.

Theorem 1 (2.2 in [18]). Let A € R"*™. Then the following statements are
equivalent:

(i) Both A, AT ¢ PF;
(i) A>0;
(iii) AT 0.
'Definition 3. A matrix A € R™" is called eventually exponentially positive if
Jto € Ns.t. et >0 for all t > tg. -
Lemma 1 (Thm 3.3 in [19]). A matrix A € R"*" is eventually exponentially
positive if and only if 3d>0 s.t. A+dI > 0.

2.4 Kron reduction for undirected networks

Consider an undirected, connected, weighted graph G(A) = (V,£,A) with ad-
jacency matrix A = [a;;] € R™". Let o C {1,...,n} (with card(a) > 2) and
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B=A{1,...,n}\ a be a partition of the node set ¥V ={1,...,n}. After an adequate
permutation of its rows and columns, the Laplacian L of the graph G(A) can be

Lla]  L{e, ]
L[B,a] L[A)
determined by the index sets « and 8, and L[] := L|a, ] the principal submatrix
of L determined by the index set a.

If L[] is nonsingular, the Schur complement of L[] in L is given by L/L[f3] :=
L[a] — Lla, B|L[B]~'L[B,a]. In the context of electrical networks, where o and
B are referred to as boundary (or terminal) and interior nodes, this procedure is
denoted Kron reduction (see e.g., [25, 26]) and it yields a matrix L, := L/L[3],
denoted Kron-reduced matrix, which is still a Laplacian of a weighted, undirected
graph G, (see [25] for details and properties of L;).

If G(A) is signed, when « is chosen as the set of nodes incident to edges with
negative weight it is shown in [27] that L[3] is positive definite and that L is psd
of corank 1 if and only if L, is psd of corank 1.

rewritten as L = [ } where we denote L[«, ] the submatrix of L

3 Pseudoinverse of eventually exponentially positive
Laplacians

In this section we study the connection between the marginal stability and even-
tual positivity of the Laplacian L and of its pseudoinverse L. If the network is
undirected and signed, or if the network is directed, signed and weight balanced,
we show that —L is eventually exponentially positive if and only if L is eventually
exponentially positive.

3.1 Directed signed network case

Assume that the graph G(A) = (V,€,A) is directed and without loops, which
means that the adjacency matrix A is with null diagonal.

When the graph is weight balanced, the Laplacian is a EP-matrix since ker(L) =
ker(LT) = span{1}. In this case, it is shown in [28] that —L is eventually expo-
nentially positive if and only if —L is marginally stable (of corank 1). In addition,
if the Laplacian is a normal matrix, then eventual exponential positivity of L is
equivalent to that of its symmetric part.

Theorem 2. Consider a signed digraph G(A) such that the corresponding Lapla-
cian L is weight balanced. Then, the following conditions are equivalent:
(i) —L is eventually exponentially positive;
(ii) —L is marginally stable of corank 1.
Furthermore, if L is normal then (i) and (ii) are equivalent to
(iii) Lg = # is psd of corank 1.
Proof. (i)<=(ii) See [28, Corollary 2].

(if)<=(iii): If L is normal, then there exists an orthonormal matrix U such that
L=UDUT, where, if ji1, ..., are the real eigenvalues of L and vy £iwy,...,vp+
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iwyp are its complex conjugate eigenvalues:

P . e Vl wl
D=1 ® - Bup® [_wl Vl}

o [ Ve we}
—We Uy
where @ indicates direct sum. If follows that L, = 3(L + LT) = iU(D+ DT)UT
and therefore that Re[A\;(L)] = \;j(Ls). O
Observe that Theorem 2 does not explicitly assume that G(A) is strongly con-
nected. However, as we will show later in Lemma 2, any of the conditions (i) or
(ii) implies that L is irreducible (i.e., that G(A) is strongly connected).
"Remark 1. Corollary 2 of [28] claims that the equivalence (ii) <= (iii) is valid in the
more general case of weight balance L. Unfortunately that result is not true as the
following Example 1 shows. A complication arises for instance from the fact that for L
weight balanced but not normal Ls may acquire negative diagonal elements even if —L is

marginally stable. Ls with negative diagonal elements obviously cannot be psd. However,
even when Lg has positive diagonal it is not guaranteed to be psd, see Example 2.

—— Example 1

In correspondence of

0.15 0 0 —0.15
—-0.23 0.15 0.15 —-0.07
0.01 -0.12 -0.03 0.14
0.07 -0.03 —-0.12 0.08

L=

it is A(L) = {0,0.0901 + 0.199¢,0.169}, i.e., —L is marginally stable of corank

1. Moreover, L1 = LT1 = 0 and, for d > 0.2647, B = dI — L ; 0. However,
A(Ls) ={-0.0402,0,0.1248,0.2655}, i.e., L is not psd.

—— Example 2

For
0.23 0 —0.28 0.05

—-0.01 0.03 0.02 -0.04
0.06 —-0.03 0.04 —-0.06
—0.27 0 0.22 0.05

it is A(L) = {0,0.1443 £0.1859,0.0514}, i.e., —L is marginally stable of corank

1. Moreover, L1 = LT1 = 0 and, for d > 0.1919, B =dI — L ; 0. However,
A(Ls) ={-0.0446,0,0.0404,0.3441}, i.e., Ly is not psd.

L=

As already mentioned, for signed Laplacians, irreducibility does not imply
corank 1. When we have weight balance, however, the opposite is true.

Lemma 2. Let G(A) be a signed digraph with Laplacian L. If —L is eventu-
ally exponentially positive or if L is weight balanced and of corank 1, then L is
irreducible.
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Proof. In both statements assume, by contradiction, that L is reducible, i.e.,
Ln L12]
O L22 ’
Assume that —L is eventually exponentially positive, i.e., 3d > 0s.t. B=dIl —

L ¥ 0 (see Lemma 1). Then B is also reducible, since PT BP = {dl —Lu ~li

there exists a permutation matrix P s.t. PTLP = [

0 dl — Loo |’
ke [(d —Lyp)k *
N 0 (dI — Lo
is not eventually positive and, consequently, B is not eventually positive.
Assume that L is weight balanced of corank 1. Then L1 = LT1 = 0 implies
that 0 € A(LT}) = A(L11) and that 0 € A(Lg2). Consequently, L is not of corank
1. O

Remark 2. For a signed digraph G(A) it holds that if Ls is psd of corank 1 then L is EP
(see [29]) and hence weight balanced, and —L is marginally stable of corank 1. Therefore,
in Theorem 2, the assumption that the Laplacian L is a normal matrix is sufficient to
prove that Ls is psd of corank 1 but not necessary. For example, for

It follows that (PT BP) ) k} for all k > 1, i.e., PTBP

1 1 -1 -1
-1 1 0 0
-1 -1 2 0|’
1 -1 -1 1

L=

which is not normal, it is A(L) = {0,1.5+1.323¢,2}, i.e., —L is marginally stable of corank
1, and A(Ls) = {0,0.7192,1.5,2.7808}, i.e., Ls is psd of corank 1.

We now show that the same statements of Theorem 2 hold also for the pseu-
doinverse LT of L. Moreover, we show that —L is eventually exponentially positive
(and marginally stable) if and only if — L' is. These results are summarized in the
following theorem.

Theorem 3. Let G(A) be a directed signed network such that the corresponding
Laplacian L is weight balanced. Let LT be the weight balanced pseudoinverse of
L. Then, the following conditions are equivalent:
(i) —L is eventually exponentially positive;

(ii) —L' is marginally stable of corank 1;

(iii) — L' is eventually exponentially positive.
Furthermore, if L (equivalently, L) is normal then (i)+ (iii) are equivalent to

(iv) L= M is psd of corank 1.

The proof of Theorem 3 relies on some considerations and propositions that
we state first.

Since a weight balanced L (of corank 1) is a EP-matrix, its left and right
orthogonal projectors onto range(L) are identical and given by IT = I — J, with
J =1 Eyrthermore it is lim¢_yoo et = J. The following properties for J can
be found in [30] ([23, 31]) or computed straightforwardly.

Lemma 3. The matrix J has the following properties:
1. J*¥ = J Vk € N which implies that (I — J)¥ = (I —J) Vk € N;
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2. JL = LJ =0 which implies that e~ Lt)) =¢~Le=) and Je L =e LJ=J;
3. e/t =T — J+ Je~t which implies that Je 7/t =e=/tJ = Jet.
We have the following properties for the Laplacian pseudoinverse.
Lemma 4. If L is weight balanced and of corank 1, then LT is weight balanced
and of corank 1. For it
LLT=LTL=T1
L'1=rhT1=o0
Lm=rncl =Lt

1
2
3

(
(
(
(4

)
)
)
LT:(L+7J)*1—%J Yy 0. )

Furthermore, if L is normal then LT is normal.

Proof. Assume that L is weight balanced. Eq. (1)-(4) are all well-known for L
symmetric, and follow easily also for EP matrices. They are proven here only for
sake of completeness. Eq. (2) is a consequence of L commuting with L. As for
eq. (2), from (LTL)T = LTL it follows that LT(LT)T1 = 0. Since L is irreducible,
LTy #0 for v#cl (c €R), hence it must be (LT)T1 =0 or 17LT =0, i.e., LT has
1 as left eigenvector relative to 0. The proof for the right eigenvector is identical.
Concerning eq. (3), from L11 =0 it is LITT = LT (1 - #) = LT, and similarly for
TILT = L. For eq. (4), since L ++.J is nonsingular, as in [25], it is enough to show
the following:

1 1
(L+y LN+ =0) = LLT 4y J L 4 “ LI+ =TI+ J =1 J+J =1,
Y Y

where we have used the properties of Lemma 3.

Then, ker(L) = ker(L”) = ker(L) = ker((L")T) = span{1} and (4) imply that
LT is weight balanced of corank 1. Notice that irreducibility of L and LT follows
from Lemma 2.

Finally, we need to show that if L is normal then LT is normal. L normal, J
symmetric and LJ = LTJ = JL = JLT = 0 imply L+ ~.J normal, which means
that (L +~.J) ™! is also normal. Since .J is symmetric (hence normal) and satisfies
the properties of Lemma 3, to show that L' is normal it is sufficient to observe
that (L+~J) ' =2J=J(L+~J)~". O

We are now ready to prove Theorem 3.

Proof. (i)==(ii) To show marginal stability of —L, denote \;(L) the eigen-
values of L, of eigenvectors 1,va,...v,. Using Theorem 2, since —L is eventually
exponentially positive then —L is also marginally stable of corank 1, meaning that
0=XA(L) <Re[A2(L)] <--- <Re[An(L)]. Consider eq. (4) of Lemma 4. Choosing
7 #0, since J is the orthogonal projection onto ker(L) = ker(L”) = span{1}, the
effect of adding +.J to L is only to shift the 0 eigenvalue to -y, while Ao(L),..., A (L)
are unchanged (see [24, Thm 2.4.10.1]). For the nonsingular L + +.J the inverse

(L +~J)~! has eigenvalues %, )\2%14),..., Anl(L) of eigenvectors 1,v9,...v,. From
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orthogonality, (L 4 ~J)~1 — %J only shifts the % eigenvalue back to the origin
without touching the other eigenvalues.

(i)=(iii) Assume that —L is eventually exponentially positive, that is, —L is
marginally stable of corank 1 (see Theorem 2). Then — L is also marginally stable
of corank 1, see Lemma 4 and proof (i)==(ii). To prove that —L! is eventually
exponentially positive, we can use Theorem 2. The proof is here reported for
completeness. In particular, from Lemma 4, we know that —L is marginally
stable with 0 = A\ (L) < Re[Ao(LT)] < --- < Re[\,(LT)] and with 1 as left/right

2
o % then B =dI — L has
p(B) = d as a simple eigenvalue of eigenvector 1 and so does BT. Hence B, BT ¢

eigenvector for 0. If we choose d > max;—o

‘PF, or, from Theorem 1, B i 0, i.e., B is eventually positive. Hence from Lemma 1
L' is eventually exponentially positive.

(iii)==(i) Since L' is weight balanced of corank 1 with span{1} = ker(L!) =
ker((L1)T), it is itself a signed Laplacian. The argument can be proven in a similar
way as the opposite direction, observing that L = (LT)T.

(iv) Assume now that L is normal or, equivalently, that L' is normal (see
Lemma 4). Since L normal implies L weight balanced, the statements (i), (ii), and
(iii) are still equivalent. To show the equivalence with (iv) it is sufficient to apply
Theorem 2 on L since LT is itself a normal signed Laplacian of corank 1. O

The following corollary, characterizing the class of eventually exponentially
positive Laplacian matrices, follows directly from Theorem 3.

Corollary 1. The class of eventually exponentially positive, weight balanced
Laplacian matrices is closed under the pseudoinverse operation.

The class of eventually exponentially positive, normal Laplacian matrices is
closed under the pseudoinverse and the symmetrization operation (the latter in-
tended as the operation of taking the symmetric part).

Remark 3. Notice that the operations of pseudoinverse and of symmetrization do not
tohT T
commute, i.e., Ll = # # (LS)Jr = (L+2L )T, even in the case of a normal Laplacian

L. Indeed, let L = UDUT with U orthonormal and D as in the proof of Theorem 2.
Without lack of generality, assume that the first column of U is Ilin, which means that

DZO@DWhereD:MQ@...@uk@[Vl W1:|

) [ Ve wz:| is nonsingular (&
w) 1 7

—wyp
denotes the direct sum). Then

0 0 0 0 0 0
Ls=U|:0 D+DT:|UT7 LT:U|: 1] UT7 LEIU[ D—1+D—T]UT7
2 2

and
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—— Example 3

For the Laplacian L of Example 1, we obtain

225 —-186 -0.19 -0.19
—1.42 158 —5.64 5.47
1.92 0.47 436 —6.75
—-2.75 =019 147 1.47

Lt =

It is A(LT) = {0,1.8888 +4.1709i,5.8891} (notice that \;(LT) = ﬁ i=2,3,4),

i.e., —L' is marginally stable of corank 1. Moreover, LT1 = (LT)T]l =0 and, for
d>5.5495, B =dIl — LT ; 0. However, A(Ll) = {-1.1164,0,2.0926,8.6904}, i.e.,
Li is not psd.

—— Example 4

The signed Laplacian

0.282 —0.072 0.191 —0.401
-0.072 0.252  0.008 —0.189
—-0.401 -0.189 0.297  0.293

0.191  0.008 —0.496 0.297

is normal, irreducible and it is A(L) = {0,0.3983 &+ 0.5920¢,0.3311}, i.e., —L is
marginally stable of corank 1. In accordance with Theorem 3, A(L') = {0,0.7823+
1.1628i,3.0204}, i.e., —L' is marginally stable of corank 1, A(Ls) = {0,0.3983,

0.3983, 0.3311}, i.e., L is psd of corank 1, and A(Li) ={0,0.7823,0.7823,3.0204},
ie., L;r is psd of corank 1.

L=

When the weight balanced digraph is nonnegative, the normality assumption
in Theorem 3(iv) can be dropped.

Theorem 4. Let G(A) be a strongly connected nonnegative (A > 0) digraph such
that the corresponding Laplacian L is weight balanced. Let L' be the irreducible

LT+(LHT
2

weight balanced pseudoinverse of L. Then Ll = is psd of corank 1.

Proof. 1In [28, Corollary 1] it is shown that when A >0, Ls = # is psd of
corank 1 if and only if G(A) is weight balanced. Using (4) (see Lemma 4) we can
write
i LAy (L) T
S 2 ,y
LT+ NT+ L+AJ
2

=(L+~J)

(LT+7J)’1—%

(L+~J)J(LT4~.J)
gl

= (L+~7J) NLs+ )L +7) = (L+~J) 7! (LT+~J)7!

Z(L+~0) N Ls+yd =) (LT +7)7
= (L+~J) 'L(L+~J) T,
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where in the step marked * we have used the properties of J listed in Lemma 3.
Hence, if Ls is psd (of corank 1) so is Ll. O

3.2 Undirected signed network case

Assume that the graph G(A) = (V, €, A) is undirected, connected and without self-
loops, which means that the adjacency matrix A is irreducible, symmetric and
with null diagonal. Consequently, the Laplacian L = A — A is a symmetric matrix,
meaning that ker(L”) = ker(L) = span{1} and that range(L) = span{1}+. In
this case, Theorem 3 proves the equivalence between eventual exponential positiv-
ity of —L and positive semidefiniteness of L (of corank 1).

For undirected networks the conditions discussed in Theorem 3 can be applied
to the Kron reduction of G(A), as described in Section 2.4, showing that if —L is
eventually exponentially positive then — L, (where L, is the Kron reduced matrix)
is also eventually exponentially positive.

Theorem 5. Let G(A) be an undirected, connected, signed network with Lapla-

cian L. Let o (with card(«a) € [2,n—1]) and S ={1,...,n} \ « be a partition of

the node set V. Let G, be the signed undirected graph obtained by applying the

Kron reduction on G, and let L, = L/L[f] be its (symmetric) Laplacian.
Consider the following conditions:

(i) —L is eventually exponentially positive;
(ii)) —L, is psd of corank 1;
(iii) —L, is eventually exponentially positive.
If L satisfies (i) then L, satisfies (ii) and (iii).
Furthermore, if « is the set of nodes incident to negatively weighted edges and
B=A{1,...,n}\ a, then the conditions (i), (ii), (iii) are equivalent.

Proof. Let o (with card(a) € [2,n—1]) and § = {1,...,n} \ « be a partition
of the node set ¥V meaning that, after an adequate permutation, L can be rewrit-
fen as L — [L%fi] L%]m]. Let L, = L/L{B] = Lla] — Lo, BL[8]~\L[3,0] €
Reard(e)xcard(@) he the Kron reduced matrix. Observe that L, is symmetric and
that Leard(a) € ker(Ly) (see also [25, Lemma IL1]), meaning that L, is itself a
signed Laplacian.

(i)=(ii)<=(iii). Assume that —L is eventually exponentially positive or,
equivalently, that L is psd of corank 1 (see Theorem 2). Then L[5] is also psd as
it is a principal submatrix of L. In what follows we prove (by contradiction) that
L[f] is actually pd, since L is irreducible and has the row and column inclusion
property.

Let card() =1 and assume, by contradiction, that L[3] = A[8] = 0. However,
L psd means that L has the row and column inclusion property, i.e., if the diag-
onal element A[f] is zero then Alw, 5] =0 and A[S,a] = 0, which contradicts the
hypothesis that L (and A) is irreducible. Hence, L[5] > 0 (pd). Now we repeat
the same argument for 1 < card(f) < n —2: suppose by contradiction that L[S]
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is psd, i.e., there exists a vector v € Rerd(5) g . L[Blv=0. Then v = {ﬂ is s.t.

Lv =0 (since 97 Lv = 0), which contradicts the hypothesis that L has corank 1
since 1 € ker(L) and v € span{1} (notice that if v = 1 ,rq(g), then either A[B,q]
is the zero matrix - in contradiction with the hypothesis that L is irreducible -, or

1
card(a) | 0 € ker(L) - in contradiction with the hypothesis that L has
0 ]lcard(ﬁ)

corank 1). Therefore, L[f] is pd.
Rewrite L as

ol (O R | ) PP R

where L{a, B|L[B] ™' = (L[B] ' L[B,a])T. Then, applying Sylverster’s law of inertia,
L psd of corank 1 and L[f] pd imply L, psd of corank 1 or, equivalently (from
Theorem 2), — L, eventually exponentially positive.

(i)<=(ii)«<=>(iii). Let a be the set of nodes incident to negatively weighted
edges. In what follows, the steps marked by the symbol x follow from Theorem 2
while the step marked by the symbol A from [32, Theorem 1].

— L eventually exponentially positive

& L psd of corank 1

é L, psd of corank 1

&L, eventually exponentially positive. (Il

Similarly to Corollary 1, from Theorem 3 and Theorem 5 we obtain the fol-
lowing characterization of the class of eventually exponentially positive Laplacian
matrices of undirected graphs.

Corollary 2. The class of eventually exponentially positive, irreducible, sym-
metric Laplacian matrices is closed under the pseudoinverse operation and the
operation of Kron reduction.

4 Electrical networks and effective resistance

A resistive electrical network can be represented as a graph G(A4) = (V, €, A) where
each weight a;; represents the inverse of the resistance between the two nodes (i.e.,
the conductance of the transmission): a;; = %_j, see [8, 10] and [26] for an overview.

The notion of effective resistance between a pair of nodes (see e.g. [26]) is related to
the pseudoinverse of the Laplacian associated to the electrical network. When the
network is connected, undirected and nonnegative, its Laplacian (and its pseudoin-
verse) is known to be psd of corank 1, which means that the effective resistance
between two nodes is well-defined (see e.g. [10] for its properties). Extensions
to signed graphs and negative resistances have been investigated in [27, 32-35],
where positive semidefiniteness of the Laplacian is expressed in terms of effective
resistance.
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In what follows we make use of Ll to extend the notion of effective resistance
to directed (strongly connected) signed networks whose Laplacian L is a normal
matrix and —L is eventually exponentially positive.

Definition 4. The effective resistance between two nodes 4,5 € {1,...,n} of a
signed digraph whose corresponding Laplacian L is normal and —L is eventually
exponentially positive, is given by

Rij = (e; —e;)  Li(e; —¢;), (5)

where Ll = W and LT is the pseudoinverse of L. The effective resistance
matrix R = [R;;] is defined as

R= DLzll]lT +]l]lTDLz —2r} (6)
where D, = diag{[Ll]H, ey [L;r]m} is a diagonal matrix whose elements are the
diagonal elements of LZ. The total effective resistance is defined as

1
Rior = 17 R1. (7)
2 7

In the literature on undirected networks, the total effective resistance (7) is
also called “weighted effective graph resistance” [36] or “Kirchhoff index” [9], and
represents the overall transport capability of the graph [14].

Remark 4. Observe that if the graph is undirected, eq. (5) reduces to the standard notion

of effective resistance since L;r =Lt

The effective resistance (5), as its counterpart for undirected graphs (see [8,
10, 26]), is still nonnegative and symmetric, its square root is a metric, and the
effective resistance matrix (6) is a Euclidean distance matrix, i.e., it has nonneg-
ative elements, zero diagonal elements and it is negative semidefinite on 1+ [10].
The last part of the proof of the next lemma follows [10, Section 2.8] and is here
reported for completeness.

Lemma 5. The square root of the effective resistance (5) between two nodes
i,j € {1,...,n} of a signed digraph with normal Laplacian L is a metric: it is non-
negative, symmetric and it satisfies the triangle inequality. The effective resistance
matrix (6) is a Euclidean distance matrix.

Proof. Theorem 3 shows that for a signed digraph with normal Laplacian L s.t.
—L is eventually exponentially positive, the matrix Ll is itself a signed Laplacian
and it is psd of corank 1 with ker(Ll) =span{l}. Since R;; is a quadratic form
generated by Li, then

1
Rij = (ei—ej) Li(ei —ej) = I(L1)2 (e; —e))I3
1
=||(LD)2 (e — ei)ll5 = (e; — i) " Li(e; — i) = Rji
forall 7,57 =1,...,n, and

1
Rij = (ei—ej) Li(ei—ej) = I(L1)2(e; — ;)3 >0
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for all 4,7 = 1,...,n, with R;; = 0 if and only if i = j (since e; —¢; € span{IlL}
when ¢ # j). Moreover,

VR + [ Rigy = II(L1) 2 (ei — ex) 2+ | (L1)2 (ex — €5)]I2

> |[(L1)2 (e — ex) + (L) (e — ¢) 2
= (LD (e —ej)le = VR

for all 4,5,k =1,...,n, i.e., the triangle inequality holds.
Finally, to prove that R is an Euclidean distance matrix we need to show that
TRz <0 forall z L 1:

2" Ry =2"(D 1117 + 117D ; — 2L}z = 22" Liz <0,

since L} is psd with ker(LZ) =span{l}. O
Note that if we consider only nonnegative digraphs then the normality assumption
of the Laplacian can be replaced by the less restrictive weight balanced assumption
when defining the effective resistance in (5). Indeed, Theorem 4 shows that if the

digraph is nonnegative and strongly connected then Ll is psd of corank 1.

Proposition 1. Consider a nonnegative strongly connected weight balanced di-
graph G(A) (with A>0). Then R;; >0 for alli,j=1,...,n and R > 0.

Another generalization of the notion of effective resistance for directed, strongly
connected, nonnegative networks is introduced in [15, 22]. The authors use the
fact that the Laplacian L is marginally stable and its projection on 1, denoted
L =QLQT (where the rows of @ € R~ form an orthonormal basis for 1), is
Hurwitz stable, to define the effective resistance between nodes i and j as ]5%] =
(ei—ej)T X (ei—e;), where X =2QTSQ and S is the pd solution of the Lyapunov
equation LS+SLT I,—1. The Kirchhoff index is then defined as Ky = ZK] RZ].

If we consider dlgraphs G(A) whose Laplacian is a normal matrix, Ky reduces
to Ky = ny i QW(L)] and we can show that it provides an upper bound for

Riot defined in (7).

n

Riot = n-trace(L]) = nZ)\l(Ll)

=2
—n. Zzn;Re ~§;Re[ lgL)]
:"XQRM[? (>2)]
“ 1
e Re[\(D)](1+ (D))
<03 i =



5 Conclusions and future work 231

with equality only if G(A) is undirected (notice that L normal and non-symmetric
means n > 3).

—— Example 5

Let G(A) be a nonnegative, unweighted, directed, cycle graph, whose Laplacian L

is a normal matrix with eigenvalues 1+ e with ), = 7r( - %), k=1,....n—1.
21
Then, Ky = % (see e.g. [15]),
n n n
1 14 costy, 1 n(n-1)
Rir=n-3 R —n- —,. N2 oMzl
tot =1 kz:; e[)\k(L)] " kz:;(l—i-cosﬂk)Q—i-sinQQk " ];2 2 7

and we obtain Ryoy < Ky for all n > 2.

5 Conclusions and future work

For signed Laplacians which are weight balanced, marginal stability (of corank 1)
is equivalent to eventual exponential stability. This work shows that the class of
eventually exponentially positive, weight balanced Laplacians is closed under the
pseudoinverse operation and, therefore, it provides a natural embedding for the
usual nonnegative Laplacian. As a byproduct we get conditions for checking the
marginal stability of the pseudoinverse of signed Laplacians. Moreover, closure
under the symmetrization operation can be proven when this class is restricted to
Laplacians that are also normal matrices. The normality assumption is a sufficient
condition and it remains to be investigated if it can be relaxed.

In addition, we would like to gain a better understanding of the set of eventually
exponentially positive, weight balanced Laplacians and its properties. For instance,
it is easy to observe that it is not a convex cone, not even if we consider normal
matrices (but the intuition is that this set is actually a convex cone, without
the origin, if we restrict to undirected graphs). However, similarly to [20], it is
possible to show that it is path-wise connected. These considerations, among other
directions, will be investigated in a future paper.
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