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Interval Consensus for Multiagent Networks
Angela Fontan, Guodong Shi, Xiaoming Hu, and Claudio Altafini

Abstract—The constrained consensus problem considered in
this paper, denoted interval consensus, is characterized by the
fact that each agent can impose a lower and upper bound on the
achievable consensus value. Such constraints can be encoded in
the consensus dynamics by saturating the values that an agent
transmits to its neighboring nodes. We show in the paper that
when the intersection of the intervals imposed by the agents
is nonempty, the resulting constrained consensus problem must
converge to a common value inside that intersection. In our
algorithm, convergence happens in a fully distributed manner,
and without need of sharing any information on the individual
constraining intervals. When the intersection of the intervals is
an empty set, the intrinsic nonlinearity of the network dynamics
raises new challenges in understanding the node state evolution.
Using Brouwer fixed-point theorem we prove that in that case
there exists at least one equilibrium, and in fact the possible
equilibria are locally stable if the constraints are satisfied or
dissatisfied at the same time among all nodes. For graphs with
sufficient sparsity it is further proven that there is a unique
equilibrium that is globally attractive if the constraint intervals
are pairwise disjoint.

Index Terms—Consensus, multi-agent systems, nonlinear co-
operative systems, saturation constraints.

I. INTRODUCTION

The basic idea of a consensus problem is to achieve an
agreement among a group of agents through a distributed
dynamical system, encoding the values that the agents want
to contribute as initial conditions of a Laplacian-like system
which represents the exchanges of information among the first
neighbors of a communication graph. Owing to the Laplacian
structure of the dynamics, each agent is driven only by relative
states, i.e., differences between its own state and that of its
neighbors. Various algorithms have been developed using this
scheme. For instance, the average consensus problem consists
of computing the average of such initial conditions, see [1]. In
a leader-follower scenario, instead, only the initial conditions
of the leaders matter, and provide the values to which the
followers converge, see [2]. In a max consensus problem, the
agents determine the max of their initial conditions, and all
settle to that value, see [3]. When cooperation and competi-
tion among the agents coexist, a bipartite consensus can be

Work supported in part by a grant from the Swedish Research Council
(grant n. 2015-04390 to C.A.)

A. Fontan is with the Division of Automatic Control, Department of
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achieved, provided that the graph is structurally balanced, see
[4].

In all these protocols, an agent has no authority to veto
certain values of consensus, or to impose that the consensus
is restricted within an admissible region. This is a drastic
limitation in certain contexts. For instance, in a network of
processors trying to agree on sharing a computational load,
each processor might have constraints on the computational
resources allocable to the shared task, and accept only consen-
sus values which are within that range. In an opinion dynamics
context, an agent might agree on a common opinion only if
this is not too extreme. In a formation docking problem, a
robot might be able to achieve alignment with the rest of the
formation only if the consensus position is within a certain
region. In all these cases, what one would like to add is a
state constraint to the consensus problem.

Consensus problems with constraints have been studied
from different perspectives in the literature. A significant
group of papers deals with the use of state projections on
convex sets, mostly in discrete-time consensus problems and
motivated by optimization algorithms [5]. Projection-based
methods for state constraint satisfaction have been introduced
also for continuous-time consensus problems, using projection
operators inspired by the adaptive control literature [6], or
logarithmic barrier functions [7]. Continuous flows can be used
to solve convex intersection computation problems when the
states of the nodes are not necessarily satisfying the constraints
for all time [8]. In [9] a discontinuous vector field is used
to describe the state saturation. Alternative approaches for
imposing state constraints on consensus problems are proposed
in e.g. [10], [11]. A different situation of consensus with state
constraints is the positive consensus problem studied in [12].
In this case, the aim is to achieve consensus while respecting
the positivity of the state variables, representing e.g. quanti-
ties that are intrinsically nonnegative (masses, concentrations,
etc.).

Other types of constrained consensus problems that have
been considered in the literature include for instance the
discarded consensus algorithm of [13], that discards the state
of neighbors if they are outside of certain bounds, or the
distributed averaging with flow constraints considered in [14].
Sometimes instead of state constraints one is interested in
models with inputs constraints, representing e.g. actuator sat-
urations, see e.g. [15], [16]. The opinion dynamics literature
offers several other contexts in which models are endowed
with state constraints in order to better represent a phe-
nomenon. In [17] for instance, interactions are unilateral, i.e.,
are considered only if the state of the neighboring nodes is
higher than the agent’s state for optimistic models, or lower
for pessimistic models. A different approach, used in opinion
dynamics, is proposed in the so-called bounded confidence
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models [18], [19], in which states that are more distant than
a certain threshold ignore each other. The result is that these
models produce clusters of opinions, and a local consensus
value within each cluster. Various variants of this opinion
dynamics problem have been proposed, to accommodate other
constraints in addition to bounded confidence. For instance in
[20] the sign of the initial conditions is maintained throughout
the opinion clustering process.

The problem we intend to study in this paper is different
from all the aforementioned state-constrained consensus prob-
lems. The main idea we want to introduce in a consensus
problem is that we want to give to each agent the possibility
of limiting the interval of values in which a consensus value
can be accepted, and therefore force the agreed consensus
value to belong to the intersection of all such intervals, if
such intersection is nonempty. The constraints we want to
impose are however not classical hard constraints on the state
variables. Rather, they should only condition the range in
which the steady state consensus value belongs to, but should
be trespassable during the transient evolution. To distinguish
our problem from these other forms of consensus with hard-
wired constraints, we call it interval consensus.

It is worth observing that our interval consensus problem
is not related to the notion of “bipartite interval consensus”
introduced in [21]. In that paper, in fact, lack of strong
connectivity of the graph is used to achieve some form of
containment control (or leader-follower scheme [2]), but no
common value (monopartite or bipartite) is achieved. In our
problem, instead, the objective of the agents is to achieve a
common consensus value, in spite of the interval constraints
imposed by each of them.

Technically an agent implements an interval consensus by
transmitting a value of its state which is saturated between
an upper and a lower bound. By limiting the transmitted
state we can skip the projection step, and obtain the same
result of imposing constraints on the consensus value although
only asymptotically. Practically it means that the agents keep
seeking a compromise value fitting all constraints, and it is
only through “stubbornly” transmitting a saturated value to
its neighbors that an agent manages to carry the common
consensus value within the interval imposed by its constraints.
Clearly, properties like the presence of a conserved quantity
in average consensus, or the “diffusion-like” structure of
any linear consensus algorithm are lost when the constraints
become active. In particular, when this happens the terms
in the vector field that drive the consensus may no longer
represent relative distances between agents states, meaning
that the overall dynamical system behaves like a (Lipschitz
continuous) switching system. Nevertheless, in the paper we
show that when the intersection of the intervals admissible by
the agents is nonempty, a consensus is always achieved, and
convergence must necessarily be to a value in the intersection.

In our model each agent decides independently what satura-
tion values to choose for its interval. Consequently, there is no
guarantee that the intervals have a nonzero intersection. When
the intersection is nonempty (the most interesting case from
an application perspective) our results provide a complete and
global description of the behavior of the system. The system

is marginally stable inside the intersection of the allowed
consensus intervals, but is asymptotically stable outside it,
because of the saturations. When the intersection of the
admissible intervals is instead empty, the analysis of the model
turns out to be much more challenging, and we could obtain
only partial results on the uniqueness and stability character
of the equilibrium points.

It is worth mentioning that the case of nonempty intersection
of the admissible intervals is the only one treated in the papers
dealing with state constraints. Furthermore, in this literature
invariance of the dynamics to the interval intersection is typi-
cally imposed. In continuous time, saturation of the dynamics
by itself is not enough to guarantee forward invariance of the
interval intersection. In fact, in order to avoid excursions of
the dynamics outside the intersection, one needs to resort to
vector fields with special structure, like projection operators
or discontinuities, which however render the dynamics sig-
nificantly more complicated and add additional burden to the
problem. In [7] for instance the logarithmic barrier approach
requires the agent to make use of auxiliary variables that must
be transmitted alongside the state variables. The model [9],
which imposes forward invariance of the interval intersection
by means of a discontinuous vector field, is problematic to
deal with because uniqueness of the solutions might be lost
at the saturation points. Also the projection-based approach
of [6] relies intrinsically on rendering the interval intersection
invariant, and can only be applied under that assumption. In
general, to the best of our knowledge, none of the available
methods deals with the case of empty interval intersection
and even for the case of nonempty intersection the analysis
is restricted to initial conditions already inside the interval
intersection (i.e., global attractivity of the intersection is never
shown). For this last case our analysis is instead global.

In the paper we treat both the continuous-time and discrete-
time interval consensus problems. In both cases we normally
assume that the graph of interactions is directed and strongly
connected. Needless to say, our interval consensus protocol
respects the fully distributed nature of the problem, including
for what concerns the individual upper and lower bounds,
which are unknown to the other agents.

A preliminary version of this paper appears in the confer-
ence proceedings of CDC 2017 [26]. This conference paper
concentrates exclusively on the nonempty interval intersection
case. All the material on the empty interval intersection case
is presented here for the first time.

II. PROBLEM DEFINITION

A. The Model

We consider a network with n nodes indexed in the set
V = {1, . . . , n}. The structure of node interconnections is
described by a simple directed graph G = (V, E), where each
element in E is an ordered pair of two distinct nodes in the
set V . The neighbor set of node i in the graph G is denoted
Ni =: {j : (j, i) ∈ E}. Each edge (j, i) ∈ E is associated with
a weight aij > 0.

Each node m holds a state xm(t) ∈ R at time t ≥ 0.
Instead of xm(t), the node transmits to its neighbors in V a
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value ψm(xm(t)) lying within an interval Im := [pm, qm],
where

ψm(z) =


pm, if z < pm;

z, if pm ≤ z ≤ qm;

qm, if z > qm.

(1)

The evolution of xi(t) ∈ R is therefore described by

d

dt
xi(t) =

∑
j∈Ni

aij

(
ψj

(
xj(t)

)
− xi(t)

)
, i ∈ V. (2)

The nonlinear consensus system (2) will be studied in this
paper.

B. Examples

A few more specific examples in which our notion of
interval consensus is of interest are the following.

• Achieving a price agreement among shareholders. As-
sume the board members of a company are negotiating
a buy or sell order, and have to find an agreement
among themselves on a price, price for which each of
them is imposing boundaries. If unanimity of the board
is required, then the request of a consensus value that
respects everybody’s constraints has priority over for
instance a consensus value which preserves the average
of the initial bids.

• Load sharing under load assignment constraints. A net-
work of computational units must share in equal parts
a certain workload, under the constraint that each unit
can allocate to the workload only a certain amount of
resources, not known a priori to the other units. When is
it possible for the units to agree on an equal load sharing
policy and how?

• Social interactions under observer effect. The observer
effect is a generalization of the DeGroot type social
interaction rule [22], accounting for the fact that in
face-to-face interactions opinions exchanged tend to be
more “moderate” than they are in reality [23], [24]. In
particular, an agent tends to avoid assuming extremist
opinions in a debate, but instead let them fall in a
“comfort interval” shared with the other agents. Seeking
a consensus under such observer effect can be modeled
as a saturation in the values of the transmitted opinions,
as we do here.

In each of these cases, constraints are part of the problem,
and if a consensus solution exists, then it has to respect
them. There is however no need to impose that the transient
dynamics respects them, i.e., the constraints are soft, not hard,
as captured by the model (2).

C. Paper Outline

The behavior of (2) depends crucially on the intersection of
intervals

⋂n
m=1Im:

(I): When the intersection is nonempty,
⋂n

m=1Im ̸= ∅,
then the system (2) always achieves a consensus value
belonging to that intersection. This case is the most
interesting from an application point of view. A complete

analysis of its behavior is provided in both continuous-
time (Section IV) and discrete-time (Section VI).

(II): When instead the intersection is empty,
⋂n

m=1Im = ∅,
then (at least) an equilibrium is always present, but it is
typically not a consensus value. As shown in Section V,
only in some special cases uniqueness and asymptotic
stability can be proven explicitly, although numerical
simulations (Section VII) suggest that a unique global
attractor should be present in all cases.

III. BACKGROUND MATERIAL

Due to the nonlinearity in the network dynamics (2), our
work relies heavily on tools from nonlinear systems, non-
smooth analysis, and robust consensus which are now briefly
reviewed.

A. Cooperativity

Let y = (y1 . . .yn)
⊤, z = (z1 . . . zn)

⊤ ∈ Rn. We say
y ⪯ z if yi ≤ zi for all i. We next consider an autonomous
dynamical system described by

d

dt
x(t) = f(x(t)) =

(
f1(x(t)) . . . fn(x(t))

)⊤
, (3)

where f(·) : Rn 7→ Rn is Lipschitz continuous everywhere.
Let x(t;y) be the solution of the system (3) with x(0) = y.
We recall the following definition.

Definition 1 The system (3) is cooperative if y ⪯ z implies
x(t;y) ⪯ x(t; z) for all y, z ∈ Rn.

Cooperativity is a special case of monotonicity [25], in
correspondence of a Jacobian matrix which is Metzler. An
effective test for cooperativity of the dynamical systems from
properties of the vector field relies on the so-called Kamke
condition ([27], p. 581, Theorem 12.11). The system (3) is
cooperative if and only if

y ⪯ z and yi = zi =⇒ fi(y) ≤ fi(z)

holds for any i = 1, . . . , n. It is easy to verify this condition
for the network dynamics (2). In fact let

fi(x) =
∑
j∈Ni

aij (ψj(xj)− xi) , i ∈ V.

Then y ⪯ z and yi = zi implies ψj(yj) ≤ ψj(zj) for all
j ∈ Ni as it is straightforward to show. Hence, since aij > 0,
ψj(yj) ≤ ψj(zj) for all j ∈ Ni and yi = zi imply

fi(y) =
∑
j∈Ni

aij (ψj(yj)− zi)

≤
∑
j∈Ni

aij (ψj(zj)− zi) = fi(z).

Therefore, (2) is a cooperative dynamical system.
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B. Limit Set, Dini Derivatives, and Invariance Principle

Consider the autonomous system (3), where f : Rd → Rd

is a continuous function. Then Ω0 ⊂ Rd is called a positively
invariant set of (3) if, for any t0 ∈ R and any x(t0) ∈ Ω0, we
have x(t) ∈ Ω0, t ≥ t0, along every solution x(t) of (3).

Let x : (a, b) → Rn be a non-continuable solution of (3)
with initial condition x(0) = x0, where the time interval is
such that −∞ ≤ a < b ≤ ∞. We call y an ω-limit point of
x(t) if there exists a sequence {tk} with limk→∞ tk = ω such
that limk→∞ x(tk) = y. The set of all ω-limit points of x(t)
is called the ω-limit set of x(t), and is denoted Λ+(x0). The
following lemma is given in [28], Appendix III (Theorems at
pp. 364-365).

Lemma 1 Let x(t) be a solution of (3). If x(t) is bounded,
then Λ+(x0) is nonempty, compact, connected, and positively
invariant. Moreover, there holds x(t) → Λ+(x0) as t → ω
with ω = ∞.

The upper Dini derivative of a continuous function r :
(a, b) → R at t is defined as

d+r(t) = lim sup
s→0+

r(t+ s)− r(t)

s
.

When r is continuous on (a, b), r is non-increasing on (a, b)
if and only if d+r(t) ≤ 0 for any t ∈ (a, b).

Now let x(t) be a solution of (3) and let V : Rd → R be
a continuous, locally Lipschitz function. The Dini derivative
of V (x(t)), d+V (x(t)), thereby follows the above definition.
On the other hand, one can also define

d+f V (x) = lim sup
s→0+

V (x+ sf(x))− V (x)

s
, (4)

namely the upper Dini derivative of V along the vector field
(3). There holds that [28]

d+f V (x)
∣∣
x∗ = d+V (x(t))

∣∣
t∗

(5)

when putting x(t∗) = x∗. The next result is convenient for
the calculation of the Dini derivative [29], [30].

Lemma 2 Let Vi(x) : Rd → R (i = 1, . . . , n) be C1

and V (x) = maxi=1,...,n Vi(x). Let x(t) ∈ Rd be an
absolutely continuous function over an interval (a, b). If
I(t) = {i ∈ {1, 2, . . . , n} : V (x(t)) = Vi(x(t))} is the
set of indices where the maximum is reached at t, then
d+V (x(t)) = maxi∈I(t) V̇i(x(t)), t ∈ (a, b).

The following is the well-known LaSalle invariance princi-
ple.

Lemma 3 (LaSalle (1968), Theorem 3.2 in [28]) Let x(t)
be a solution of (3). Let V : Rd → R be a continuous,
locally Lipschitz function with d+V (x(t)) ≤ 0 on [0, ω). Then
Λ+(x0) is contained in the union of all solutions that remain
in Z := {x : d+f V (x) = 0} on their maximal intervals of
definition.

C. Robust Consensus

The following lemma deals with a robust version of the
usual consensus problem, and it is a special case of Theorem
4.1 and Proposition 4.10 in [31].

Lemma 4 Consider the following network dynamics defined
over the digraph G:

d

dt
xi(t) =

∑
j∈Ni

aij
(
xj(t)− xi(t)

)
+ wi(t), i = 1, . . . , n

(6)

where wi(t) is a piecewise continuous function. Let the initial
time be t = t∗ and the initial condition be x(t∗) = x∗. Let G
contain a directed spanning tree. Denote

∥w(t)∥[t∗,∞) := max
i∈V

sup
t∈[t∗,∞)

|wi(t)|.

Then for any ϵ > 0, there exists δ > 0 such that

∥w(t)∥[t∗,∞) ≤ δ =⇒ lim sup
t→+∞

max
i,j∈V

∣∣xi(t)− xj(t)
∣∣ ≤ ϵ

for any initial value x∗.

IV. NONEMPTY INTERVAL INTERSECTION: INTERVAL
CONSENSUS

Denote x(t) = (x1(t) . . .xn(t))
⊤ the network state. Let

x0 = (x1(0) . . .xn(0))
⊤ be the network initial value. The

following theorem says that node state consensus can be
enforced by the interval constraints node dynamics if the
intervals admit some nonempty intersection.

Theorem 1 Suppose
⋂n

m=1Im ̸= ∅ and let the underlying
graph G be strongly connected. Then along the system (2), for
any initial value x0, there is a c∗(x0) ∈

⋂n
m=1Im such that

lim
t→∞

xi(t) = c∗, i ∈ V.

Remark 1 It is worth observing that Theorem 1 is not valid
if we replace the strongly connectivity of G with a weaker
condition, like G containing a directed spanning tree. In fact
in the latter case only the state of the root nodes matters when
achieving an (unconstrained) consensus value, and such states
may not be compatible with the saturations imposed e.g. on
the leaf nodes, meaning that consensus may not be achieved
even when

⋂n
m=1 Im ̸= ∅.

The condition
⋂n

m=1Im ̸= ∅ is equivalent to p∗ ≤ q∗ with

p∗ = max
i∈V

pi, q∗ = min
i∈V

qi.

When such condition holds we have
⋂n

m=1Im = [p∗, q∗].
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A. Proof of Theorem 1

We proceed in steps.

Step 1. Introduce H(x(t)) = max
{
maxi∈V xi(t), q∗

}
.

Clearly H is continuous and locally Lipschitz. If H(x(t)) >
q∗, then maxi∈V xi(t) > q∗ for [t, t+ ϵ) for some sufficiently
small ϵ. Let I0(t) := {j : xj(t) = maxi∈V xi(t)}. As a result,
from Lemma 2,

d+H(x(t)) = d+ max
i∈V

xi(t)

= max
i∈I0(t)

ẋi(t)

= max
i∈I0(t)

[
−

∑
j∈Ni

aij(xi(t)− ψj(xj(t)))
]
. (7)

Let i0 ∈ I0(t). Then xi0(t) ≥ xj(t) for all j. Moreover, by
definition we have qj ≥ q∗, which implies:
(i). ψj(xj(t)) ≤ xj(t) if xj(t) > q∗;

(ii). ψj(xj(t)) ≤ q∗ if xj(t) ≤ q∗.
Combining the two cases we can conclude that xi0(t) −
ψj(xj(t)) ≥ 0 since xi0(t) > q∗. From (7) we further know
that d+H(x(t)) ≤ 0 if H(x(t)) > q∗. This in fact further
assures that if H(x(t∗)) = q∗, then H(x(t)) = q∗ for all
t ≥ t∗. We have proved that H(x(t)) is a non-increasing
function for all t.

Also introduce h(x(t)) = min
{
mini∈V xi(t), p∗

}
. The

same argument leads to d+h(x(t)) ≥ 0, i.e., h(x(t)) is a non-
decreasing function for all t. Consequently, for V (x(t)) =
H(x(t))− h(x(t)), there holds d+V (x(t)) ≤ 0.

Step 2. Denote1 Z := {x : d+V (x) = 0}. In this step, we
show Z ⊆ [p∗, q∗]

n when G is strongly connected.
We use a contradiction argument. Let x∗ = (x∗

1 . . .x
∗
n)

T ∈
Z with x∗ /∈ [p∗, q∗]

n. Then there must be a node i satisfying
x∗
i /∈ [p∗, q∗]. By symmetry we assume x∗

i > q∗, and without
loss of generality we let x∗

i = maxj∈V x∗
j . Let us consider a

solution x(t) of (2) with x(0) = x∗.
Denote I∗ := {j : x∗

j = x∗
i = maxk∈V x∗

k}. Because G
is strongly connected, along the system (2), nodes in I∗ will
either be attracted by other nodes (if any) in V \ I∗ which hold
values strictly smaller than x∗

i , or simply by q∗. Therefore,
there is ϵ > 0 such that xj(ϵ) < x∗

i for all j. This is to say,
H(x(ϵ)) < H(x(0)) and therefore the trajectory cannot be
within Z . We have proved Z ⊆ [p∗, q∗]

n.
Now by Lemma 3, Λ+(x0) is always contained in Z , and

therefore Λ+(x0) ⊆ [p∗, q∗]
n. Further by Lemma 1, there

holds2

x(t) → [p∗, q∗]
n (8)

as t→ ∞.

Step 3. By (8), for any δ > 0, there is a finite T (δ) > 0 such
that along (2), there holds∣∣xi(t)− ψi(xi(t))

∣∣ ≤ δ

α

1More precisely, it is the Dini derivative of V along system (2). But by
(5), there is no harm writing it in this way.

2From the properties of V , each trajectory is obviously contained in a
compact set with ω = ∞.

for all t ≥ T (δ) and i ∈ V , with α = max{|aij |·|Ni| : (j, i) ∈
E}. We can therefore rewrite (2) as

d

dt
xi(t) = −

∑
j∈Ni

aij
(
xi(t)− xj(t)

)
+ wi(t), (9)

with
wi(t) :=

∑
j∈Ni

aij
(
ψj(xj(t))− xj(t)

)
,

and conclude that the following claim holds true.

Claim. For any δ > 0, there is a T (δ) > 0 such that |wi(t)| ≤ δ
for all t ≥ T (δ) and i ∈ V , i.e., ∥|w(t)|∥[T (δ),∞) ≤ δ.

Consider the sequence ϵk = 1
k for k = 1, 2, . . . . For any

fixed k, Lemma 4 can be invoked to conclude that we can find
a δk such that if ∥w(t)∥[t∗,∞) ≤ δk for some t∗ > 0, then

lim sup
t→+∞

max
i,j∈V

∣∣xi(t)− xj(t)
∣∣ ≤ ϵk. (10)

Then, from the above claim, for such δk there exists indeed
a T (δk) for which |ωi(t)| ≤ δk for all t ≥ T (δk) and i ∈ V ,
i.e., ∥w(t)∥[t∗,∞) ≤ δk for t∗ = T (δk). As a result, for any
fixed k, (10) holds. In other words,

ℓ(x0) := lim sup
t→+∞

max
i,j∈V

∣∣xi(t)− xj(t)
∣∣

is a well-defined constant for which it holds

0 ≤ ℓ(x0) ≤ 1

k

for all k. As a result, ℓ(x0) = 0, hence

lim
t→+∞

∣∣xi(t)− xj(t)
∣∣ = 0

for all i, j ∈ V .

Step 4. In this step, we finally show that each xi(t) admits a
finite limit. Let c∗ be a limit point of xj(t) for a fixed j. Based
on the fact that Z ⊆ [p∗, q∗]

n, there must hold c∗ ∈ [p∗, q∗].
If p∗ = q∗, the result already holds. We assume p∗ < q∗ in
the following.

According to (10), for any ϵ > 0, there exists t∗ > 0 such
that ∣∣xi(t∗)− c∗

∣∣ ≤ ϵ. (11)

for all i. There are three cases.
(i) Let c∗ ∈ (p∗, q∗). We let ϵ be sufficiently small so that

p∗ < c∗ − ϵ ≤ xi(t∗) ≤ c∗ + ϵ < q∗

for all i. This means the system (2) is a standard consen-
sus dynamics for t ≥ t∗ because ψi(xi(t)) = xi(t) for
all t ≥ t∗. Of course all xi(t) converge to the same limit,
which must be c∗.

(ii) Let c∗ = q∗. We let ϵ be sufficiently small so that

p∗ < q∗ − ϵ < q∗.

As a result, p∗ < xi(t∗) ≤ q∗ + ϵ for all i. Repeating the
argument we used in Step 1, it is easy to see that

max
i∈V

xi(t)
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is non-increasing for t ≥ t∗, and therefore it converges
to a finite limit, say M∗. While from (10), mini∈V xi(t)
must converge to the same limit M∗. This leaves c∗ =
q∗ =M∗ to be the only possibility, and all xi(t) converge
to q∗.

(iii) Let c∗ = p∗. The argument is symmetric to Case (ii).
By first showing that mini∈V xi(t) converges with p∗ <
p∗ + ϵ < q∗, we know all xi(t) converge to p∗.

We have now proved that all xi(t) will converge to a common
limit within [p∗, q∗]. The proof is complete. □

V. EMPTY INTERVAL INTERSECTION: EXISTENCE AND
STABILITY OF EQUILIBRIA

In this section, we study the network dynamics (2) when
the intervals Im admit an empty intersection. To this end, we
denote x(t;y) as the solution of (2) with the initial condition
x(0) = y. Denote p = mini∈V pi and q = maxi∈V qi. It is
obvious that conv

(⋃
m∈VIm

)
= [p, q], where conv denotes

the convex hull of a set. It turns out that, regardless of the
network topology G and the intervals Im, the nonlinearity of
(2) always defines equilibria dynamics.

Theorem 2 The system (2) has at least one equilibrium. In
fact, all equilibria of the system (2) lie within [p, q]n if G is
strongly connected.

Naturally we are interested in the stability of the equilibria.
We introduce the following definitions.

Definition 2 An equilibrium e = (e1 . . . en)
⊤ is an equi-

unconstrained equilibrium if em is an interior point of
[pm, qm] for all m ∈ V; an equi-constrained equilibrium if
em is an interior point of R \ [pm, qm] for all m ∈ V .

Definition 3 (i) An equilibrium e is locally stable if for any
ϵ > 0, there exists δ > 0 such that ∥x(t;y)∥ ≤ ϵ for all t ≥ 0
and all ∥y − e∥ ≤ δ;

(ii) An equilibrium e is locally asymptotically stable if for
any ϵ > 0, there exists δ > 0 such that ∥x(t;y)∥ ≤ ϵ for all
t ≥ 0 and all ∥y − e∥ ≤ δ, and limt→∞ x(t;y) = e for all
∥y − e∥ ≤ δ.

We present the following result for the stability of equi-
unconstrained or equi-constrained equilibria.

Theorem 3 Suppose
⋂n

m=1Im = ∅. The following statements
hold for the system (2).

(i) Every equi-unconstrained equilibrium is locally stable;
(ii) Every equi-constrained equilibrium e = (e1, . . . , en)

⊤

is locally asymptotically stable if Ni ̸= ∅ for all i ∈ V .

Apparently the classes of equi-unconstrained and equi-
constrained equilibria only cover a fraction of possible equilib-
ria of the network dynamics. With pairwise disjoint constraint
intervals, i.e., Im1 ∩Im2 = ∅ ∀m1, m2 ∈ V , we can establish
a full picture regarding the stability of the equilibria.

Theorem 4 Let the graph G be strongly connected and sup-
pose the Im are pairwise disjoint. Then for the system (2) the
following statements hold.

(i) There cannot exist equi-unconstrained equilibria;
(ii) Every equilibrium is locally asymptotically stable.

We conjecture that the system (2) should have a unique
equilibrium which is globally attractive when the interaction
graph G is strongly connected and the Im are pairwise disjoint.
It seems that there are some major difficulties in establish-
ing such an assertion due to the nonlinear node dynamics.
Nonetheless, we manage to prove the following result for
directed graphs with the in-degree no more than one at the
majority of the nodes.

Theorem 5 Let the graph G be strongly connected and as-
sume that |Nm| ≤ 2 for all m ∈ V with the equality
holding at most for exactly one node. Suppose the Im are
pairwise disjoint. Then along the system (2), there exists
d

∗
= (d

∗

1 . . .d
∗

n)
⊤ ∈ Rn such that

lim
t→∞

xi(t;x
0) = d

∗

i , i ∈ V

for all initial value x0.

Remark 2 The value of d
∗

i depends on the network topology.
For example, following the proof of Theorem 5, assume
without loss of generality that p1 < p2 < · · · < pn and let
i0 ̸= {1, n} be a node satisfying Ni0 = {n}; then d

∗

i0
= pn.

If instead Ni0 = {1}, then d
∗

i0
= q1. If Ni0 = {1, n}, then

d
∗

i0
=

pnai0n+q1ai01

ai0n+ai01
.

Remark 3 The underlying graph G is termed a symmetric
undirected graph if (i, j) ∈ V if and only if (j, i) ∈ V , and
aij = aji for all (i, j) ∈ V . Undirected graphs would not help
too much to simplify the stability analysis because there can
be the case with ψi(xi) = xi while ψj(xj) = pj . Therefore
locally the node interactions could be essentially directional
even with bidirectional interactions.

A. Proof of Theorem 2

We rewrite the system (2) as

d

dt
x(t) = g(x(t)) =

(
g1(x(t)) . . . gn(x(t))

)⊤
(12)

with gi(x(t)) =
∑

j∈Ni
aij

(
ψj

(
xj(t)

)
− xi(t)

)
. Now let

x0 ∈ [p, q]n. Then it is straightforward to verify that x(t;x0) ∈
[p, q]n for all t ≥ 0 because the vector field g is pointing
inwards the n-dimensional cube [p, q]n. This leads to the
following lemma.

Lemma 5 The set [p, q]n is positively invariant along the
system (2).

Therefore, x(t; ·) defines a continuous mapping from [p, q]n

to itself. By the famous Brouwer fixed-point theorem, there is
at least one point e ∈ [p, q]n satisfying x(t; e) = e, i.e., e is
a fixed point. We have proved existence of equilibria of the
network dynamics within the set [p, q]n. In order to further
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prove that there can be no equilibrium outside the set [p, q]n

when G is strongly connected, we need the following lemma.
We introduce the notation dist(x(t), [p, q̄]n) = ||x(t)||[p,q̄]n =
miny∈[p,q̄]n ||x(t)−y|| to indicate the distance between x(t) ∈
Rn and the set [p, q̄]n.

Lemma 6 Let the graph G be strongly connected. Then along
the system (2) there holds for any x0 ∈ Rn that

lim
t→∞

dist
(
x(t), [p, q]n

)
= 0.

Proof. Define β(t) = maxm∈V xm(t) and again let I0(t) :=
{j : xj(t) = maxi∈V xi(t)}. Note that, ψm

(
xm(t)

)
≤ q for

all m ∈ V and for all t ≥ 0. From Lemma 2 and noticing the
structure of the node dynamics, there holds that if β(t) ≥ q,
then

d+β(t) = max
i∈I0(t)

d

dt
xi(t)

= max
i∈I0(t)

∑
j∈Ni

aij
(
ψj

(
xj(t)

)
− xi(t)

)
≤ max

i∈I0(t)

∑
j∈Ni

aij
(
q − xi(t)

)
= max

i∈I0(t)

∑
j∈Ni

aij
(
q − β(t)

)
≤ min{aij > 0 : (j, i) ∈ E}

(
q − β(t)

)
(13)

when G is strongly connected. Similarly, d+β(t) < 0 if
β(t) > q̄. As a result, we can obtain lim supt→∞ β(t) ≤ q. A
symmetric argument leads to the fact that lim inft→∞ β(t) ≥
p. We have now proved the desired lemma. □

Based on Lemma 6, obviously every equilibrium must be
within the set [p, q]n when G is strongly connected. This
proves Theorem 2.

B. Proof of Theorem 3

(i) Let the equilibrium e be an equi-unconstrained equilibrium,
i.e., em ∈ [pm, qm] for all m ∈ V .

Assume first that em ∈ (pm, qm) for all m ∈ V . Under this
condition on e there exists ϵ > 0 such that for

Bϵ(e) := {y ∈ Rn : ∥y − e∥ < ϵ}

there holds
d

dt
x(t) = −Lx(t), x(t) ∈ Bϵ(e) (14)

where L is the network Laplacian. Clearly (14) is standard
consensus dynamics. Therefore e is locally stable.

Assume now that em ∈ [pm, qm] for all m ∈ V and that
there exists (at least) an m ∈ V such that em ∈ {pm, qm}.
Denote Vq , Vp and V̄† as the node sets with Vq :=

{
m ∈ V :

em = qm
}

, Vp :=
{
m ∈ V : em = pm

}
, V̄† :=

{
m ∈ V :

em ∈ (pm, qm)
}

. Then

diei =
∑

j∈Ni∩Vp

aijpj+
∑

j∈Ni∩Vq

aijqj+
∑

j∈Ni∩V̄†

aijej , i ∈ V,

where di =
∑

j∈Ni
aij , i ∈ V .

We divide the analysis considering each of the following 2n

orthants of Bϵ(e) around the equilibrium,

Ns
ϵ(e) :=

{
y = (y1, . . . ,yn)

⊤ : yi ∈ J si
i (e, ϵ) i ∈ V

}
(15)

with si ∈ {1, 2} and

J si
i (e, ϵ) =

{
[ei, ei + ϵ), si = 1

(ei − ϵ, ei], si = 2
, i ∈ V.

We first consider the orthant described by si = 1 for all
i ∈ V , which we denote N+

ϵ (e),

N+
ϵ (e) :=

{
y = (y1 . . .yn)

⊤ : yi ∈ [ei, ei + ϵ) ∀ i ∈ V
}
.

For sufficiently small ϵ, x(t) ∈ N+
ϵ (e) implies that

ψ(xm(t)) = xm(t) if m ∈ V̄† ∪ Vp, while ψ(xm(t)) =
ψ(em) = qm if m ∈ Vq . Hence, when x(t) ∈ N+

ϵ (e), it
follows that

d

dt
(xi(t)− ei) = −dixi(t) +

∑
j∈Ni∩(V̄†∪Vp)

aijxj +
∑

j∈Ni∩Vq

aijqj

= −di(xi(t)− ei) +
∑

j∈Ni∩(V̄†∪Vp)

aij(xj − ej), i ∈ V.

The network dynamics can be rewritten as

d

dt

(
x(t)− e

)
= −H

(
x(t)− e

)
, x(t) ∈ N+

ϵ (e) (16)

where H = [hij ] is given by

hij =


di, j = i,

−aij , j ∈ Ni ∩ (V̄† ∪ Vp),

0, otherwise.

If Vq = ∅, V̄† ∪ Vp ⊇ Ni and H = L. Otherwise, if Vq ̸= ∅,
then H = D − Ā where each element of Ā is given by
āij = aij if j ∈ Ni ∩ (V̄† ∪ Vp) and āij = 0 otherwise, for
all i ∈ V . Hence H has nonnegative eigenvalues and the zero
eigenvalue has equal algebraic and geometric multiplicities.

Moreover, the set N+(e) =
{
y = (y1 . . .yn)

⊤ : yi ≥
ei ∀ i ∈ V

}
is positively invariant along the network dynamics

(2). This is an immediate conclusion from the cooperativity
of the system (2) established in Subsection III-A. We then
conclude that there exists δ > 0 such that for any x0 ∈ N+

δ (e),
there holds x(t,x0) ∈ N+

ϵ (e) for all t ≥ 0.
To complete the proof we repeat the same reasoning for the

other 2n−1 orthants around the equilibrium described by (15).
Let V+ = {m ∈ V : xm ≥ em} and V− = {m ∈ V : xm ≤
em}. For sufficiently small ϵ, x(t) ∈ Ns

ϵ(e) implies that

ψ(xm(t)) =


qm, m ∈ V+ ∩ Vq =: V+

q

pm m ∈ V− ∩ Vp =: V−
p

xm(t), m ∈ V \ (V+
q ∪ V−

p )

Hence, as before, the network dynamics can be rewritten as

d

dt

(
x(t)− e

)
= −Hs

(
x(t)− e

)
, x(t) ∈ Ns

ϵ(e) (17)
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where Hs = [hsij ] is given by

hsij =


di, j = i,

−aij , j ∈ Ni ∩ (V \ (V+
q ∪ V−

p )),

0, otherwise.

The problem is then identical to the case N+
ϵ (e).

(ii) Let the equilibrium e be an equi-constrained equilibrium,
i.e., Aψ(e) = De where D = diag(d1 . . .dn) is the degree
matrix with di =

∑
j∈Ni

aij , and em is an interior point
of R \ [pm, qm] for all m ∈ V . When x(t) ∈ Bϵ(e), for a
sufficiently small ϵ, ψ(x(t)) = ψ(e) and hence

d

dt
(x(t)− e) = −Dx(t) +Aψ(e)

= −D
(
x(t)− e

)
, x(t) ∈ Bϵ(e). (18)

Now let x0 ∈ Bϵ(e). Then there exists µ > 0 such that
x(t;x0) ∈ Bϵ(e) for t ∈ [0, µ] simply by continuity of the
trajectory. However, along the interval t ∈ [0, µ] for the system
(18) there holds ∥x(t;x0)− e∥ ≤ ∥x0 − e∥. Therefore again
we have shown that Bϵ(e) is an invariant set in such case
along the network system (2). The local asymptotical stability
of e is then straightforward to verify.

We have now proved Theorem 3.

C. Proof of Theorem 4

Without loss of generality we assume p1 < p2 < · · · < pn
and therefore p1 ≤ q1 < p2 ≤ q2 < · · · < pn ≤ qn. We
first establish a technical lemma strengthening the statement
of Lemma 6.

Lemma 7 Let the graph G be strongly connected. Suppose
the Im are pairwise disjoint with p1 < p2 < · · · < pn. Then
along the system (2) there holds that for any x0 ∈ Rn,

lim
t→∞

∥∥x(t)∥∥
[q1,pn]n

= 0.

Proof. Since the Im are pairwise disjoint with p1 < p2 <
· · · < pn, we have ψj

(
xj(t)

)
≤ qn−1 < pn for all j =

1, . . . , n− 1. Thus,

d

dt
xn(t) =

∑
j∈Nn

anj
(
ψj

(
xj(t)

)
− xn(t)

)
≤

∑
j∈Nn

anj
(
qn−1 − xn(t)

)
, (19)

which implies that lim supt→∞ xn(t) ≤ qn−1. Therefore, for
any x0, there is T1(x0) > 0 such that

ψn

(
xn(t)

)
= pn, t ≥ T1. (20)

Let β(t) and I0(t) be defined as in the proof of Lemma 6.
For t ≥ T1, if β(t) ≥ pn, then

d+β(t) = max
i∈I0(t)

d

dt
xi(t)

= max
i∈I0(t)

∑
j∈Ni

aij
(
ψj

(
xj(t)

)
− xi(t)

)
≤ max

i∈I0(t)

∑
j∈Ni

aij
(
pn − xi(t)

)
= max

i∈I0(t)

∑
j∈Ni

aij
(
pn − β(t)

)
≤ min{aij > 0 : (j, i) ∈ E}

(
pn − β(t)

)
(21)

when G is strongly connected. This in turn leads to the fact that
lim supt→∞ β(t) ≤ pn. A symmetric argument will give us
lim inft→∞ β(t) ≥ q1 based on the fact that there is T2(x0) >
0 that ψ1

(
x1(t)

)
= q1, t ≥ T2. We have now completed the

proof of the desired lemma. □
We are now ready to prove Theorem 4, following a similar

reasoning to the proof of Theorem 3. Let e = (e1 . . . en)
⊤ be

an equilibrium. From Lemma 7 and its proof there must hold
ψ1(e1) = q1 and ψn(en) = pn with e1 > q1 and en < pn.
We denote V† as the node set with

V† :=
{
m ∈ V : em ∈ R \ (pm, qm)

}
and V̄† as the node set with V̄† = V \ V†. Then

diei =
∑

j∈Ni∩V†

aijκj +
∑

j∈Ni∩V̄†

aijej , i ∈ V,

where di =
∑

j∈Ni
aij and κj = pj or qj for all j ∈ Ni∩V†.

There holds V† ̸= ∅ since {1, n} ∈ V†. Let us introduce

N+
ϵ (e) :=

{
y = (y1 . . .yn)

⊤ : yi ∈ [ei, ei + ϵ) ∀ i ∈ V
}
.

For sufficiently small ϵ, x(t) ∈ N+
ϵ (e) implies that

ψ(xm(t)) = xm(t) if m ∈ V̄†, while ψ(xm(t)) = ψ(em) =
κm if m ∈ V†. Hence, when x(t) ∈ N+

ϵ (e), it follows that

d

dt
(xi(t)− ei) = −dixi(t) +

∑
j∈Ni∩V†

aijκj +
∑

j∈Ni∩V̄†

aijxj(t)

= −di (xi(t)− ei) +
∑

j∈Ni∩V̄†

aij (xj(t)− ej) , i ∈ V.

The network dynamics can be rewritten as
d

dt

(
x(t)− e

)
= −H

(
x(t)− e

)
, x(t) ∈ N+

ϵ (e) (22)

where H = [hij ] depends on the structure of V†, and is given
by

hij =


di, j = i,

−aij , j ∈ Ni ∩ V̄†,

0, otherwise.

Now that G is strongly connected and {1, n} ∈ V†, the
matrix −H is Hurwitz since it is weakly diagonally dominant
and irreducible with negative diagonal entries [32]. Therefore,
given In as the n dimensional identity matrix, there exists a
unique symmetric positive definite matrix P such that

PH+H⊤P = In. (23)
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We establish two facts.
F1. N+(e) =

{
y = (y1 . . .yn)

⊤ : yi ≥ ei ∀ i ∈ V
}

is
positively invariant along the network dynamics (2). This
is an immediate conclusion from the cooperativity of the
system (2) established in Subsection III-A.

F2. From the Lyapunov equation (23) we can routinely obtain

∥x(t)− e∥2 ≤ e−t/λmax(P )λmax(P )

λmin(P )
∥x(0)− e∥2

along the linear dynamics d
dt

(
x(t)−e

)
= −H

(
x(t)−e

)
.

Combining the two facts, we conclude that there exists δ >
0 such that for any x0 ∈ N+

δ (e), there holds x(t;x0) ∈ N+
ϵ (e)

for all t ≥ 0. Further, it is straightforward to verify that
limt→∞ x(t;x0) = e if x0 ∈ N+

δ (e).
In order to complete the proof we also need to consider the

other 2n − 1 orthants around the equilibrium

Ns
ϵ(e) :=

{
y = (y1, . . . ,yn)

⊤ : yi ∈ J si
i (e, ϵ) i ∈ V

}
with si ∈ {1, 2} and

J si
i (e, ϵ) =

{
[ei, ei + ϵ), si = 1

(ei − ϵ, ei], si = 2
, i ∈ V.

For each Ns
ϵ(e) we can use the transform{

yi = −xi + 2 ei, if J si
i (e, ϵ) = (ei − ϵ, ei];

yi = xi, if J si
i (e, ϵ) = [ei, ei + ϵ).

Then the problem will become identical to the case of N+
ϵ (e).

This concluded the proof of Theorem 4.

D. Proof of Theorem 5

The proof relies on the intermediate statements in the proof
of Lemma 7 that

ψ1

(
x1(t)

)
= q1, ψn

(
xn(t)

)
= pn

for all t ≥ max{T1, T2}.
Since |Nm| ≤ 2 for all m ∈ V with the equality holding at

most for exactly one node and since G is strongly connected,
there must be a node i0 /∈ {1, n} satisfying Ni0 = {1},
Ni0 = {n}, or Ni0 = {1, n}. Consequently, from the network
dynamics (2) it is obvious that there is a d

∗

i0
such that

limt→∞ xi0(t) = d
∗

i0
. The continuity of ψi0(·) in turn implies

lim
t→∞

ψi0(xi0(t)) = ψi0(d
∗

i0).

Next, there exists a node i1 ̸= i0 with Ni1 ∈ {i0, 1, n} since G
is strongly connected. From the fact that ψm(xm(t)) converges
to finite limits for m ∈ {i0, 1, n}, we further know that there is
a d

∗

i1
such that limt→∞ xi1(t) = d

∗

i1
. This can be shown using

the following argument: let limt→∞ b(t) = b∗ and consider

ȧ(t) = −
(
a(t)− b(t)

)
= −

(
a(t)− b∗)+ ξ(t) (24)

with ξ(t) = b(t)− b∗. Since ξ(t) → 0, then a(t) → b∗. We
will now apply this argument to our problem.

If Ni1 = {i0}, then the evolution of xi1(t) is described by

ẋi1(t) = ai1i0
[
−
(
xi1(t)− ψi0(xi0(t))

) ]
. (25)

Let a(t) := xi1(t), b(t) := ψi0(xi0(t)), b
∗ := ψi0(d

∗

i0
), and

ξ(t) := ψi0(xi0(t))−ψi0(d
∗

i0
). Then (25) can be rewritten in

a similar form as (24),

ȧ(t) = ai1i0
[
−
(
a(t)− b∗)+ ξ(t)

]
.

Since ξ(t) → 0 as t → ∞, then a(t) → b∗, i.e., xi1(t) →
d

∗

i1
:= ψi0(d

∗

i0
). Instead, if Ni1 = {i0, 1}, then the evolution

of xi1(t) is described by

ẋi1(t) = −
∑

j=i0,1

ai1j xi1(t) +
∑

j=i0,1

ai1jψj(xj(t)) (26)

Let a(t) := xi1(t), b(t) := (ai1i0+ai11)
−1(ai1i0ψi0(xi0(t))+

ai11ψ1(x1(t))), b∗ := (ai1i0+ai11)
−1(ai1i0ψi0(d

∗

i0
)+ai11q1)

and ξ(t) := b(t)− b∗. Then (26) can be rewritten as

ȧ(t) =
(
ai1i0+ ai11

)[
−
(
a(t)− b∗)+ ξ(t)

]
.

Since ξ(t) → 0 as t → ∞, then a(t) → b∗, i.e.,
xi1(t) → d

∗

i1
:= (ai1i0 + ai11)

−1(ai1i0ψi0(d
∗

i0
) + ai11q1).

Similarly, if Ni1 = {i0, n}, then xi1(t) → d
∗

i1
:= (ai1i0 +

ai1n)
−1(ai1i0ψi0(d

∗

i0
) + ai1npn). This recursion can be re-

peated until all nodes in the set V have been visited, which
implies the conclusion of Theorem 5.

VI. NONEMPTY INTERVAL INTERSECTION IN DISCRETE
TIME

Let us consider the discrete-time network dynamics analo-
gous to (2) as below:

xi(t+ 1) = xi(t) + ϵ
∑
j∈Ni

aij

(
ψj

(
xj(t)

)
− xi(t)

)
=

(
1− ϵ

∑
j∈Ni

aij

)
xi(t) + ϵ

∑
j∈Ni

aijψj

(
xj(t)

)
(27)

for all i ∈ V. Clearly (27) is the Euler approximation of (2)
with ϵ a small step size.

Theorem 6 Suppose
⋂n

m=1Im ̸= ∅ and let the un-
derlying graph G be strongly connected. Suppose ϵ <
1/maxi∈V

∑
j∈Ni

aij . Then along the system (27), for any
initial value x0, there is c∗(x0) ∈

⋂n
m=1Im such that

lim
t→∞

xi(t) = c∗, i ∈ V.

Proof. The proof has to rely on some new development
from the proof of Theorem 1 since we cannot use LaSalle
invariance principle. We continue to use the definitions of
H(x(t)), h(x(t)), and V (x(t)), but defined over the discrete-
time system (27). Again we proceed in steps.
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Step 1. In this step, let us establish the monotonicity of the
functions H(x(t)) and h(x(t)). We introduce a function I+a (·)
by I+a (y) = y, y > a and I+a (y) = a, y ≤ a. Therefore,

H(x(t+ 1)) = I+q∗

(
max
i∈V

xi(t+ 1)

)
= I+q∗

(
max
i∈V

(
(1− ϵ

∑
j∈Ni

aij)xi(t) + ϵ
∑
j∈Ni

aijψj(xj(t))
))

≤ I+q∗

(
max
i∈V

(
(1− ϵ

∑
j∈Ni

aij)I
+
q∗(xi(t))+ϵ

∑
j∈Ni

aijI
+
q∗(xj(t))

))
≤ I+q∗

(
max
i∈V

(
(1− ϵ

∑
j∈Ni

aij)I
+
q∗(max

j∈V
xj(t))

+ ϵ
∑
j∈Ni

aijI
+
q∗(max

j∈V
xj(t))

))
= I+q∗

(
I+q∗(max

j∈V
xj(t))

)
= H(x(t)), (28)

where the first inequality holds due to the definition of
I+q∗(·), and the second inequality is based on the mono-
tonicity of I+q∗(·) as well as the assumption that ϵ <
1/maxi∈V

∑
j∈Ni

aij . We can use a symmetric argument to
establish h(x(t+ 1)) ≥ h(x(t)).

Step 2. From the conclusion of the previous analysis, there
are two constants H∗ and h∗ such that

lim
t→∞

H(x(t+ 1)) = H∗, lim
t→∞

h(x(t+ 1)) = h∗.

Note that there always holds H∗ ≥ q∗ ≥ p∗ ≥ h∗. In this step,
we prove q∗ = H∗ and p∗ = h∗.

We use a contradiction argument. Let us assume for the
moment p∗ > h∗ in order to eventually build a contradiction.
Fix a time s and take a node i0 with xi0(s) = minj∈V xj(s) ≤
h∗ < p∗. Such a node always exists in view of the fact that
p∗ > h∗ = limt→∞ min{minj∈V xj(t), p∗}. The graph is
strongly connected, therefore there must exist a node i1 ̸= i0
that is influenced by node i0 in the interaction graph, resulting
in

xi1(s+ 1) = (1− ϵ
∑

j∈Ni1

ai1j)xi1(s) + ϵ
∑

j∈Ni1

ai1jψj(xj(s))

= (1− ϵ
∑

j∈Ni1

ai1j)xi1(s) + ϵ
∑

j ̸=i0∈Ni1

ai1jψj(xj(s))

+ ϵai1i0ψi0(xi0(s))

≤ (1− ϵ
∑

j∈Ni1

ai1j)I
+
q∗(max

j∈V
xj(s))+

ϵ
∑

j ̸=i0∈Ni1

ai1jI
+
q∗(max

j∈V
xj(s)) + ϵai1i0p∗

= (1− ϵai1i0)I
+
q∗(max

j∈V
xj(s)) + ϵai1i0p∗

≤ (1− θ)I+q∗(max
j∈V

xj(s)) + θp∗ (29)

for

θ =
{
ϵ min
(i,j)∈E

{aij : i ̸= j, aij ̸= 0}, min
i∈V

{1− ϵ
∑
j∈Ni

aij}
}
,

where in the first inequality we have used

xi1(s) ≤ I+q∗(max
j∈V

xj(s))

ψj(xj(s)) ≤ I+q∗(max
j∈V

xj(s))

ψi0(xi0(t)) ≤ ψi0(h∗) ≤ p∗;

and the second inequality is due to the facts that
I+q∗(maxj∈V xj(s)) ≥ p∗ and ϵai1i0 ≥ θ.

On the other hand, for node i0, we have

xi0(s+ 1) = (1− ϵ
∑

j∈Ni0

ai0j)xi0(s) + ϵ
∑

j∈Ni0

ai0jψj(xj(s))

≤ (1− ϵ
∑

j∈Ni0

ai0j) p∗ + (ϵ
∑

j∈Ni0

ai0j) I
+
q∗(max

j∈V
xj(s))

≤ θ p∗ + (1− θ) I+q∗(max
j∈V

xj(s)) (30)

Therefore, for k = i0, i1, we have

xk(s+ 1) ≤ θ p∗ + (1− θ) I+q∗(max
j∈V

xj(s))

Continuing to investigate time instant s+ 2, we have

xk(s+ 2) = (1− ϵ
∑
j∈Nk

akj)xk(s+ 1)+

ϵ
∑
j∈Nk

akjψj(xj(s+ 1))

≤ (1− ϵ
∑
j∈Nk

akj)

[
θ p∗ + (1− θ) I+q∗(max

j∈V
xj(s))

]
+ (ϵ

∑
j∈Nk

akj) I
+
q∗(max

j∈V
xj(s))

= θ p∗ + θ(ϵ
∑
j∈Nk

akj) (I
+
q∗(max

j∈V
xj(s))− p∗)

+ (1− θ) I+q∗(max
j∈V

xj(s))

≤ θ p∗ + θ(1− θ) (I+q∗(max
j∈V

xj(s))− p∗)

+ (1− θ) I+q∗(max
j∈V

xj(s))

= θ2 p∗ + (1− θ2) I+q∗(max
j∈V

xj(s)), k = i0, i1 (31)

This recursion gives us

xk(s+ τ) = θτp∗ + (1− θτ )I+q∗(max
j∈V

xj(s)) (32)

for k = i0, i1, τ = 1, . . . , n− 1. Note that i2 is influenced by
either i0 or i1, and without loss of generality we assume it is
i1 that is affecting i2. Then

xi2(s+ 2) = (1− ϵ
∑

j∈Ni2

ai2j)xi2(s+ 1)

+ ϵ
∑

j ̸=i1∈Ni2

ai2jψj(xj(s+ 1)) + ϵai2i1ψi1(xi1(s+ 1))

≤ (1− ϵai2i1)I
+
q∗(max

j∈V
xj(s))

+ ϵai2i1

[
(1− θ)I+q∗(max

j∈V
xj(s)) + θp∗

]
≤ (1− θ) I+q∗(max

j∈V
xj(s)) + θ

[
(1− θ)I+q∗(max

j∈V
xj(s)) + θp∗

]
= (1− θ2) I+q∗(max

j∈V
xj(s)) + θ2p∗ (33)
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A similar recursion leads to

xi2(s+ τ) ≤ (1− θτ ) I+q∗(max
j∈V

xj(s)) + θτp∗ (34)

for τ = 2, . . . , n − 1. The strong connectivity of the graph
allows us to continue the process until all nodes are visited,
leading to

xk(s+ n− 1) ≤ (1− θn−1) I+q∗(max
j∈V

xj(s)) + θn−1p∗

(35)

for k = i0, . . . , in−1, and thus

max
j∈V

xj(s+ n− 1) ≤ (1− θn−1) I+q∗(max
j∈V

xj(s)) + θn−1p∗

(36)

with k = i0, . . . , in−1.
At this point we investigate two cases, respectively.

(a) Let p∗ < H∗. In this case, for sufficiently large s,
I+q∗(maxj∈V xj(s)) will be so close to H∗ that

(1− θn−1)I+q∗(max
j∈V

xj(s)) + θn−1p∗ < H∗.

Therefore, (36) implies that

max
j∈V

xj(s+ n− 1) < H∗ (37)

for all s that are sufficiently large. From the definition of
H(x(t)) and H∗, we can only conclude H∗ = q∗. As a
result, maxj∈V xj(s+ n− 1) < q∗ for sufficiently large
s, which implies that there exists T > 0 such that

ψj(xj(t)) ≤ I+p∗
(max
j∈V

xj(t))

for all j and all t ≥ T .
This means, the term I+q∗(maxj∈V xj(s)) in Eqs (29),
(33), (35) can be replaced by I+p∗

(maxj∈V xj(s)) for s >
T . In this case (36) becomes

max
j∈V

xj(s+ n− 1) ≤ (1− θn−1)I+p∗
(max
j∈V

xj(s))

+ θn−1p∗ (38)

for all s ≥ T . Letting s tend to infinity from both sides
of the inequality we know

lim sup
t→∞

max
j∈V

xj(t) ≤ p∗.

(b) Suppose p∗ = H∗. Then of course
lim supt→∞ maxj∈V xj(t) ≤ p∗ = H∗.

Therefore, there must hold true that
lim supt→∞ maxj∈V xj(t) ≤ p∗. On the other hand, p∗ > h∗
implies that there also holds true limt→∞ minj∈V xj(t) = h∗.
An immediate conclusion we can draw from the
structure of the algorithm is that it can only be the
case lim supt→∞ maxj∈V xj(t) = p∗ because otherwise,
there is a node i∗ with ψi∗(xi∗(t)) = p∗ for all t that are
large enough. However, even lim supt→∞ maxj∈V xj(t) = p∗
ensures that there must always be nodes whose states are
arbitrarily close to p∗ for an infinite amount of times, a
similar contradiction argument would clarify that in that case
limt→∞ minj∈V xj(t) = p∗ holds as well. This contradicts
our standing assumption p∗ > h∗.

We have now proved p∗ = h∗. A symmetric argument leads
to q∗ = H∗ as well.

Step 3. We rewrite the update of node i as

xi(t+ 1) = (1− ϵ
∑
j∈Ni

aij)xi(t) + ϵ
∑
j∈Ni

aijxj(t) + wi(t)

(39)

with wi(t) := ϵ
∑

j∈Ni
aij

(
ψj(xj(t))− xj(t)

)
. Then we can

reach

lim sup
t→+∞

max
i,j∈V

∣∣xi(t)− xj(t)
∣∣ = 0. (40)

by the robust consensus results for discrete-time dynamics
[33]. The final piece of proof for node state convergence
follows from the same argument as the proof for continuous-
time dynamics, and then we finally have limt→∞ xi(t) = c∗

for all i with c∗ ∈ [p∗, q∗]. This completes the proof. □

VII. NUMERICAL EXAMPLES

In this section we first consider a case in which the intervals
Im have nonempty intersection, and then an empty intersection
case. Our third example is a cycle graph also with empty
interval intersection for which the equilibrium point can be
computed explicitly.

Example 1 In Fig. 1 an example of interval consensus on
strongly connected graph with n = 5 and adjacency matrix

A =


0 0 0.3360 0 0

0.0451 0 0.0465 0.0104 0.0641
0.2096 0 0 0 0.1768
0.0054 0.0012 0.0038 0 0
0.0759 0.1650 0 0 0


is shown in which

⋂n
m=1 Im = [p∗, q∗] ̸= ∅. In the

left column the consensus value c∗ is strictly inside the
interval [p∗, q∗]. In the right column instead c∗ is on the
boundary of [p∗, q∗] (c∗ = p∗) and it is clearly driven
there by the saturation on ψ(x). Notice that, unlike for a
standard consensus problem, in the process of converging
maxi{xi(t)} − mini{xi(t)} is not monotonically decreas-
ing, see Fig. 2. Notice further that x0 need not belong to⊗n

i=1[pi, qi] = [p1, q1] × · · · × [pn, qn], i.e., convergence
is for any x0 ∈ Rn. As the left column of Fig. 1 shows,
x0 /∈

⊗n
i=1[pi, qi] does not necessarily lead to c∗ on the

boundary of [p∗, q∗].

Example 2 In the n = 5 example of Fig. 3, the graph is
strongly connected (the same adjacency matrix of Example 1
is used), but the intervals Im have empty intersection, i.e.,⋂n

m=1 Im = ∅, and are not pairwise disjoint. Numerically the
system (2) admits a unique equilibrium point which is not a
consensus value, but which appears to be asymptotically stable
in the entire R5.

Example 3 In this example, we still consider empty intersec-
tion between the sets, i.e.,

⋂n
m=1 Im = ∅ or, equivalently,

q∗ < p∗, and in addition we assume that p1 ≤ p2 ≤ · · · ≤ pn
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(a) (b)

(c) (d)

Fig. 1. Two simulations for Example 1, from different initial conditions. Top row: the trajectories x(t) of the agents are shown in solid
color lines. For each agent the shaded region represents the intervals [pm, qm], while the transversal dotted lines are p∗ and q∗. Bottom row:
Intervals [pm, qm] for each of the 5 agents, and consensus value c∗ (circle) are shown in color, while the gray shaded region corresponds
to [p∗, q∗]. In the left column we have c∗ ∈ (p∗, q∗), while in the right column c∗ = p∗.

and q1 ≤ · · · ≤ qn. The intervals need not be pairwise disjoint.
We show that if the graph is a particular (strongly connected)
cycle graph (which has |Nm| = 1 for all m, see Fig. 4 panel
(a)), then (2) admits a unique equilibrium point e which is in
[q∗, p∗]

n. This special case is interesting because it is possible
to compute e in an explicit way, directly from the pm and
qm. The adjacency matrix A = [aij ] has the following cyclic
structure:

aij =

{
ai,i+1 ̸= 0, j = i+ 1

0, j ̸= i+ 1
i = 1, . . . , n− 1

and

anj =

{
an1 ̸= 0, j = 1

0, j ̸= 1
.

In this case (2) becomes

d

dt
xi(t) = ai,i+1

(
ψi+1

(
xi+1(t)

)
− xi(t)

)
i = 1, . . . , n− 1

d

dt
xn(t) = an1

(
ψ1

(
x1(t)

)
− xn(t)

)
(41)

and, from Theorem 2, it admits at least one equilibrium point,
which is in [p, q]n = [p1, qn]

n. Let e be an equilibrium point

of (41), that is

{
ei = ψi+1

(
ei+1

)
, i = 1, . . . , n− 1

en = ψ1

(
e1
)

From Theorem 2, we know that e1 ≥ p1, which implies that
ψ1

(
e1
)
= e1 if e1 ≤ q1 or ψ1

(
e1
)
= q1 if e1 > q1. Then

en =

{
e1, if e1 ≤ q1

q1, if e1 > q1

and

en−1 =

{
ψn

(
e1
)
, if e1 ≤ q1

ψn

(
q1
)
, if e1 > q1

=

{
pn, if e1 ≤ q1

pn, if e1 > q1
= pn

because q1 = q∗ < p∗ = pn. Therefore

en−2 = ψn−1

(
pn

)
=

{
pn, if pn ≤ qn−1

qn−1, if pn > qn−1
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Fig. 2. Values of maxi{xi(t)} (blue), mini{xi(t)} (green), and maxi{xi(t)} −mini{xi(t)} (red) for the simulations in Fig. 1. It can be
seen that maxi{xi(t)} −mini{xi(t)} is not monotonically decreasing in the second case.

(a)

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

(b)

Fig. 3. Example 2. (a): Trajectories x(t) of the system (2) from 10 random initial conditions. Shadowed region: pm and qm for each agent.
(b): Intervals [pm, qm] for each agent and equilibrium e (circle).

because pn ≥ pn−1, and

en−3 = ψn−2

(
en−2

)
=

{
ψn−2

(
pn

)
, if pn ≤ qn−1

ψn−2

(
qn−1

)
, if pn > qn−1

=


qn−2, if pn ∈ (qn−2, qn−1]

pn, if pn ≤ qn−2

qn−2, if pn > qn−1

=

{
qn−2, if pn > qn−2

pn, if pn ≤ qn−2

Iterating yields

en−i =

{
qn−i+1, if pn > qn−i+1

pn, if pn ≤ qn−i+1

i = 1, . . . , n− 1

and in particular

e1 =

{
q2, if pn > q2

pn, if pn ≤ q2
.

Since q2 ≥ q1 and pn > q1, it follows that e1 ≥ q1 and hence
that en = q1. In conclusion, the system (2) admits a unique

equilibrium point e such that

en = q1

en−1 = pn

en−i =

{
qn−i+1, if pn > qn−i+1

pn, if pn ≤ qn−i+1

i = 2, . . . , n− 1

Following the same reasoning as the proof of Theorem 4, the
equilibrium must be locally asymptotically stable. Moreover,
it must be e ∈ [q1, pn]

n = [q∗, p∗]
n. Fig. 4 shows the result for

a cycle graph of size n = 10 nodes and edges weight drawn
from a uniform distribution. The asymptotic stability character
of the unique equilibrium point is confirmed, see panel (b).

VIII. CONCLUSION

If a group of agents seeking a consensus has non-
dispensable requests on the range of values that such a con-
sensus can achieve, then standard consensus algorithms cannot
be used and something more sophisticated must be used. The
scheme proposed in this paper, interval consensus, allows to
do this efficiently in both continuous and discrete-time with
the only (unavoidable) prerequisite that the intersection of the
agent intervals is nonempty.

To complete the understanding of our saturated dynamics
(2) some work still need to be done for the cases with
empty interval intersection. In particular, the mixed case of
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Fig. 4. Example 3. (a): Cycle Graph. (b): Trajectories x(t) of the system (2) from 10 random initial conditions. (c): Intervals [pm, qm] for
each agent and e (circle).

an equilibrium which is neither equi-constrained nor equi-
unconstrained (see Example 2) is not treated at all in the
paper. The conjecture which we could not fully prove, is that
the empty interval intersection case always leads to a single
(asymptotically stable) equilibrium point.
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