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The role of frustration in collective decision-making
dynamical processes on multiagent signed networks

Angela Fontan and Claudio Altafini

Abstract—In this work we consider a collective decision-
making process in a network of agents described by a nonlinear
interconnected dynamical model with sigmoidal nonlinearities
and signed interaction graph. The decisions are encoded in the
equilibria of the system. The aim is to investigate this multiagent
system when the signed graph representing the community is
not structurally balanced and in particular as we vary its
frustration, i.e., its distance to structural balance. The model
exhibits bifurcations, and a “social effort” parameter, added to
the model to represent the strength of the interactions between
the agents, plays the role of bifurcation parameter in our analysis.
We show that, as the social effort increases, the decision-making
dynamics exhibits a pitchfork bifurcation behavior where, from
a deadlock situation of “no decision” (i.e., the origin is the
only globally stable equilibrium point), two possible (alternative)
decision states for the community are achieved (corresponding to
two nonzero locally stable equilibria). The value of social effort
for which the bifurcation is crossed (and a decision is reached)
increases with the frustration of the signed network.

Index Terms—Multiagent systems, signed networks, nonlinear
(non)monotone systems, bifurcation.

I. INTRODUCTION

IN this paper we want to study a nonlinear model for
decision-making in a community of agents where antago-

nistic interactions may exist between the agents. Indeed, while
collaboration between agents is often assumed in order to
reach a common decision (for instance in applications such as
collective behavior in animal groups [1], [2], cooperative con-
trol in robotics [3], [4], or opinion forming [5], [6]), there are
applications in which restricting to collaborative interactions
means oversimplifying the relationship among the agents [7],
[8]. Classes of multiagent systems in which the presence of
antagonism is plausible include for instance “social networks”,
i.e., groups of individuals interacting and exchanging opinions
in a friendly/unfriendly manner or trusting/mistrusting each
other. Other scenarios in which antagonism is unavoidable are
team games, where different teams have to compete against
each other, or parliamentary democracies, where parties can
be allied or rival.

Signed networks [9], [10] are a natural framework to model
a community of agents where both cooperative and antago-
nistic interactions coexist: a positive sign labeling an edge
between two agents represents a friendly (or cooperative) rela-
tionship, while a negative sign labeling an edge an unfriendly
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(or competitive) relationship. If the group of agents can be
divided into two subgroups such that the agents inside each
group are mutual friends (i.e., they are linked by edges with
positive weight) while the agents across the two subgroups
are enemies (i.e., they are linked by edges with negative
weight), we say that the network is structurally balanced
[11], [12]. If we assume that a network is undirected and
connected, an equivalent condition to structural balance is that
the smallest eigenvalue of the normalized signed Laplacian L
is zero, λ1(L) = 0 in the notation we introduce below. As
for instance the works [13], [14], [15], [16] show, real signed
social networks are in general not structurally balanced.

To model the evolution of the opinions of the agents in a
community represented as a signed social network we use the
model of opinion forming previously introduced in [1], [17],
[18]. This model is characterized by sigmoidal and saturated
nonlinearities, describing how the agents transmit their opinion
to their neighbors. It has a (signed) Laplacian-like structure at
the origin and it is endowed with a social effort parameter π
which in our analysis plays the role of bifurcation parameter.
Our aim is to study how the strength of the commitment among
the agents, represented by π, affects the presence and stability
of the equilibrium points of the system, which represent the
decision states for the community. Under our assumptions,
the system is monotone [19] if and only if the corresponding
signed social network is structurally balanced. In this case the
behavior of the system can be easily deduced from [1], [17],
[18], where the authors consider a cooperative system (i.e.,
only friendly interactions exist between the agents), which is
a particular case of monotone system. In this case the analysis
shows that for increasing values of the social effort parameter
π, the system undergoes two sequential pitchfork bifurcations:
after the first bifurcation the number of equilibria jumps
from one to three, while after the second bifurcation multiple
(more than three) equilibrium points arise. In particular when
crossing the first bifurcation the system passes from having
the origin as globally asymptotically stable equilibrium to a
situation in which two nonzero locally stable equilibria exist
while the origin becomes a saddle point. This situation is
maintained up to the second bifurcation where novel equilibria,
stable or unstable, appear. In the context of social interactions
this behavior can be interpreted as follows: if the social effort
between the agents is small then no decision is achieved (the
origin is the only attractor), while two alternative decision
states can be reached if the agents have the “right” amount
of commitment. However, by further increasing the social
effort, the agents may fall in a situation of overcommitment
where multiple (more than 2) decisions are possible. For
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cooperative networks the first threshold value is fixed and
constant, while the second threshold value depends on the
algebraic connectivity of the network.

We show in this work that if we consider signed networks
that are structurally unbalanced then, while the qualitative
behavior of the system does not change, the value of social
effort parameter for which the first bifurcation is crossed is no
longer constant but grows with the smallest eigenvalue of the
normalized signed Laplacian of the network, which for struc-
turally unbalanced networks is strictly positive (λ1(L) > 0). In
particular, its value increases with the amount of “frustration”
encoded in the signed network, i.e., with the amount of
“disorder” that the negative edges introduce in a network, see
[13] for a more thorough statistical physics interpretation. First
introduced by Harary [9], [20] and denoted “line index of
balance”, the frustration is a standard measure to express the
distance of a signed network from a structurally balanced state
and is defined as the minimum (weighted) sum of the negative
edges that need to be removed in order to obtain a structurally
balanced network, see [21] for details.

For our model of decision-making, this means that when
we consider signed networks with higher frustration, the first
bifurcation is crossed at higher values of the social effort
parameter π, meaning that a higher commitment is required
from the agents in order to converge to a nontrivial equilibrium
point. From a sociological point of view, the result admits a
fairly reasonable interpretation: the more in a community there
are “unresolved tensions” among the agents (i.e., unbalanced
interactions, as measured by the frustration), the more commit-
ment is required by the agents to achieve a common nontrivial
decision and to “escape” the (trivial) zero equilibrium point.
On the other hand, the value of social effort for which the
second bifurcation is crossed is independent of the frustra-
tion of the network [21], meaning that for highly frustrated
graphs the range of social commitment values for which only
two nontrivial equilibria are present shrinks. As a concrete
application of these results, in a recent work (see [16]) we
have described the process of government formation in parlia-
mentary democracies as a collective decision-making process
where the members of the parliament (the agents) are required
to cast a vote of confidence (the decision) to a candidate
cabinet coalition. In this context, the social effort parameter π
is a proxy for the complexity of the government negotiations
(measured as duration of the negotiation phase), while a signed
network describes the composition of the parliament after
each election with signs representing party alliances/rivalries.
These “parliamentary networks” are in general not structurally
balanced and their frustration correlates well with the duration
of the government negotiation processes.

Because of the nonlinearities the behavior of our system is
fundamentally different from that of [12]. In the case of [12] in
fact, structural balance leads to bipartite consensus and struc-
tural unbalance to asymptotic stability. In our case, instead,
balanced and unbalanced cases are qualitatively similar, with
only the bifurcation point gradually moving to higher values
of social commitment as the frustration grows. In this respect,
the model we present here has a more reasonable behavior
than the one in [12], at the cost of a higher complexity.

Even though the behavior of the system in the structurally
unbalanced case is qualitatively similar to the structurally
balanced case, the technical tools that must be used to show
the results become much more challenging because the system
is no longer monotone. An important technical contribution
of this paper is in fact to develop methods able to perform
a global state space analysis of a broad class of nonlinear
nonmonotone interconnected systems which are not diagonally
dominant. Familiar examples of Hopfield-like neural networks
fall in this category [22], [23]. Another noteworthy result we
obtain is a description of the region in which all equilibria
of the system must be contained. In particular also the upper
bound to the 1-norm of the equilibria we provide depends on
the frustration of the signed network.

The paper investigates also a discrete-time version of our
multiagent decision-making system. Such extension is non-
trivial in several directions: for instance new phenomena, like
period-2 limit cycles, appear in the discrete-time case. Also the
techniques that must be used to prove the results are largely
different from those of the continuous-time case. In particular,
we show that the first bifurcation occurring at the origin is
either a pitchfork or a period-doubling bifurcation, depending
on the relative positions of the corresponding threshold values
for the social effort parameter π, where the value for which
a pitchfork bifurcation is crossed is the same as in the
continuous-time case. Interestingly, we show that if the signed
network has zero or small frustration, the value of π for which
a period-doubling bifurcation is crossed is always bigger than
the usual bifurcation threshold.

The rest of the paper is organized as follows: in Section II
we introduce preliminary material. In Sections III and IV we
present our results for collective decision-making over signed
networks in continuous- and discrete-time, respectively. The
results are discussed and interpreted in Section V. Numerical
simulations and examples are shown in Section VI. Technical
preliminaries (useful Lemmas and Theorems) and most of the
proofs are put in the Appendices at the end of the paper. Some
of the proofs, here omitted for lack of space, are available in
the extended version of this paper [24].

A preliminary version of this work appears in the conference
proceedings of CDC 2018 [21]. The new contributions are a
necessary condition for the existence of nontrivial equilibria,
the proof that these equilibria are locally asymptotically stable,
and the description of the region in which all equilibria must
be contained. All the material on the discrete-time version of
our decision-making model is presented here for the first time.

II. PRELIMINARIES

A. Notation and linear algebra

Given a matrix A = [aij ] ∈ Rn×n, A ≥ 0 means element-
wise nonnegative, i.e., aij ≥ 0 for all i, j = 1, ..., n, while
A > 0 means element-wise positive, i.e., aij > 0 for all
i, j = 1, ..., n. The spectrum of A is denoted Λ(A) =
{λ1(A), . . . , λn(A)}, where λi(A), i = 1, ..., n, are the
eigenvalues of A. A matrix A is called irreducible if there
does not exist a permutation matrix P s.t. PTAP is block
triangular. If x, y ∈ Rn then x ≥ y (x > y) means that
xi ≥ yi (resp., xi > yi) for all i = 1, ..., n. Given two
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matrices A,B ∈ Rn×n, the notation A ∼ B means that A and
B are similar, and hence that they have the same eigenvalues.
Given a diagonal positive definite matrix D, we denote the
unique (diagonal) positive definite square root of D by D

1
2 .

The symbol 1 indicates the vector of ones (1m is used when
the dimension m is not clear from the context) and 0n,m the
n×m zero matrix (0 if it is clear from the context).

B. Signed graphs

Let G = (V, E) be a graph with vertex set V (such that
card(V) = n) and edge set E ⊆ V ×V . Let A = [aij ] ∈ Rn×n

be the adjacency matrix of G, i.e., aij 6= 0 if and only if
(j, i) ∈ E . In this work we consider undirected and connected
graphs without self-loops.

A graph G is signed if each of its edges is labeled by a sign,
that is, sign (aij) = sign (aji) = ±1 if (i, j) ∈ E . The signed
Laplacian of a graph G is the symmetric matrix L = ∆−A,
where ∆ = diag {δ1, . . . , δn} and each diagonal element δi is
given by δi =

∑n
j=1 |aij |, i = 1, ..., n [12]. The normalized

signed Laplacian of a graph G, see [25], [26], is the non-
symmetric (symmetrizable, see Appendix A for a definition)
matrix defined as

L = ∆−1L = I −∆−1A. (1)

Notice that since the graph G is connected, it does not have
isolated vertices, hence δi 6= 0 for all i and the matrix ∆−1 is
well-defined and positive definite.

All the matrices we consider in this work are either sym-
metric (e.g., A and L) or symmetrizable (e.g., L), hence they
have real eigenvalues, which we assume to be arranged in a
nondecreasing order. Let λi(A), λi(L) and λi(L), i = 1, ..., n,
be the eigenvalues of A, L and L, respectively. By construction
the eigenvalues of the signed Laplacian L and the normalized
signed Laplacian L are nonnegative, which can be easily
shown using the Geršgorin’s Theorem, see [27, Thm 6.1.1].

A cycle of a signed graph G is said positive if it contains an
even number of negative edges, negative otherwise. A graph G
is structurally balanced if all its cycles are positive. Equivalent
conditions for G (connected) to be structurally balanced are the
following [12]: (i) there exists a partition of the node set V =
V1 ∪ V2 such that every edge between V1 and V2 is negative
and every edge within V1 or V2 is positive; (ii) there exists a
signature matrix S = diag {s1, ..., sn} with diagonal entries
si = ±1 (i = 1, ..., n), such that SLS has all nonpositive
off-diagonal entries; (iii) λ1(L) = 0. The frustration index of
a signed graph G is defined as

ε(G) = min
S=diag{s1,...,sn}

si=±1 ∀i

1

2

∑
i6=j

[ |L|+ SLS ]ij , (2)

where [·]ij indicates the i, j element and |·| the element-wise
absolute value, and it provides a measure of the distance of
G from a structurally balanced state [21]. If G is structurally
balanced, ε(G) = 0.

C. Monotone systems

Consider the system

ẋ = f(x), x(0) = x0 (3)

where f is a continuously differentiable function defined on a
convex open set U ⊆ Rn. Let ϕ(t, x̄) be the solution x(t) of
(3) s.t. x(0) = x̄.

Let S be a signature matrix, i.e., S = diag {s1, ..., sn} with
si = ±1 ∀i, and let SRn indicate an orthant of Rn, SRn =
{x ∈ Rn : sixi ≥ 0, i = 1, ..., n}. The partial ordering ≤S is
preserved by the solution operator ϕ(t, ·) and the system (3)
is type SRn monotone if whenever x̄, ȳ ∈ U with x̄ ≤S ȳ then
ϕ(t, x̄) ≤S ϕ(t, ȳ) for all t ≥ 0 [19].

Lemma 1 (2.1 in [19]) If f ∈ C1(U) where U is open and
convex in Rn then ϕ(t, ·) preserves the partial ordering ≤S
for t ≥ 0 if and only if S ∂f∂x (x)S has nonnegative off-diagonal
elements for every x ∈ U .

Therefore, a system (3) is monotone if and only if the
graph described by the Jacobian ∂f

∂x as adjacency matrix is
structurally balanced with fixed S ∀x ∈ U .

III. DECISION-MAKING IN ANTAGONISTIC MULTIAGENT
SYSTEMS IN CONTINUOUS-TIME

A. Problem formulation

To model the process of decision-making in a community
of n agents represented by a signed network G, we consider
the following class of nonlinear interconnected systems,

ẋ = −∆x+ πAψ(x), x ∈ Rn. (4)

The state vector x = [x1 · · · xn]T ∈ Rn represents the agents’
opinions, A = [aij ] is the adjacency matrix of the network
G and describes how the agents interact with each other,
∆ = diag {δ1, . . . , δn}, π > 0 is a positive scalar parameter
and ψ(x) = [ψ1(x1) · · · ψn(xn)]T . Each nonlinear function
ψi(xi) describes how an agent i transmits its opinion xi to
its neighbors in the network. This term is then weighted first
by the element aij , describing the influence between agents
i and j (positive/friendly if aij > 0 or negative/unfriendly if
aij < 0), and then by the parameter π representing the global
“social effort” or “strength of commitment” among the agents
[1]. The equilibria of the system represent the decision states
for the community.

We assume that the signed network G is undirected (two
agents able to influence each other’s opinion share the same
amount of trust/distrust in each other), connected (there are
no isolated agents) and without self-loops, meaning that the
signed adjacency matrix A is symmetric, irreducible and with
null diagonal. We also assume that a Laplacian-like assump-
tion relates ∆ and A, δi =

∑
j |aij |. Finally, we assume that

each nonlinear function ψi(xi) : R → R of the vector ψ(x)
satisfies the following conditions

ψi(xi) = −ψi(−xi), ∀xi ∈ R (odd) (A.1)
∂ψi
∂xi

(xi) > 0, ∀xi ∈ R and
∂ψi
∂xi

(0) = 1 (monotone) (A.2)

lim
xi→±∞

ψi(xi) = ±1 (saturated) (A.3)

ψi(xi)

{
strictly convex ∀xi < 0

strictly concave ∀xi > 0
(sigmoidal). (A.4)
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The system (4) can be rewritten in a “normalized” form,

ẋ = ∆ [−x+ πHψ(x)] , x ∈ Rn, (5)

where we consider the normalized interaction matrix H :=
∆−1A. The Jacobian of (5) is J(x) = −∆(I − πH ∂ψ

∂x (x))
which at the origin for π = 1 reduces to J = −∆L (where
L is the normalized signed Laplacian of the network); hence,
under our assumptions and from Lemma 1, the system (5) is
monotone if and only if the signed network G is structurally
balanced.

Our aim is use bifurcation analysis to investigate how the
social effort parameter π (our bifurcation parameter) affects
the presence of the equilibrium points of the system (5).

B. Structurally balanced case

Previous works, such as [17], [18], have studied the be-
haviour of the system (5) when the adjacency matrix A of the
network is nonnegative, i.e., when the system is cooperative
[19]. These results, summarized in the following theorem, still
hold when the system is in general monotone, that is, when the
network G described by the matrix A is structurally balanced.

Theorem 1 ([18]) Consider the system (5) where each non-
linear function ψi(·), i = 1, ..., n, satisfies the properties
(A.1)÷(A.4). Assume that the signed graph G is structurally
balanced and let S be the signature matrix s.t. SLS has all
nonpositive off-diagonal entries (|A| = SAS).

(i) When π < 1 the origin is the unique equilibrium point
and it is asymptotically stable.

(ii) When π = π1 = 1 the system undergoes a pitchfork
bifurcation, the origin becomes unstable and two new
equilibria appear, in the orthants described by S and −S,
respectively, denoted SRn+ and SRn−. These equilibria are
locally asymptotically stable with domain of attraction at
least equal to SRn+ and SRn−, respectively.

(iii) If λ2(L) < 1 and simple, when π = π2 = 1
1−λ2(L) the

system undergoes a second pitchfork bifurcation, and new
equilibria in other orthants of Rn appear, which may be
stable or unstable.

C. Structurally unbalanced case

In this section we want to introduce our novel results,
i.e., the extension of Theorem 1 to signed networks which
are structurally unbalanced: we show that, by redefining the
threshold values π1 and π2, the system (5) behaves in a similar
manner as the one described in Theorem 1.

Theorem 2 summarizes our findings. We proceed as follows:
first, in (i), we prove that the origin is the unique equilibrium
point for the system when π < π1 and it is globally asymptot-
ically stable, where π1 depends on the smallest eigenvalue of
the normalized signed Laplacian L. Then, in (ii) we show that
when π = π1 the system undergoes a pitchfork bifurcation and
two new equilibria appears, which are locally asymptotically
stable for all values of the bifurcation parameter in the interval
(π1, π2), where π2 depends on the second smallest eigenvalue
of the normalized signed Laplacian L. Similarly to [1], [18],
the proof relies on bifurcation theory. Lack of monotonicity

however implies that most of the proofs require different
arguments than those used in [1], [18]. At π2 the system
bifurcates again and new equilibria appear, see (iii).

Theorem 2 Consider the system (5) where each nonlin-
ear function ψi(·), i = 1, ..., n, satisfies the properties
(A.1)÷(A.4). Assume that the signed graph G is structurally
unbalanced with normalized signed Laplacian L.

(i) When π ≤ π1 = 1
1−λ1(L) , the origin is the unique

equilibrium point of (5) and it is globally asymptotically
stable.

(ii) Let λ1(L) be simple,
(ii.1) (existence): when π crosses π1 the system undergoes a

pitchfork bifurcation and two new equilibria (x∗ and
−x∗) appear;

(ii.2) (stability): when π > π1 the origin is an unstable equi-
librium point, while the equilibria ±x∗ 6= 0 are locally
asymptotically stable for all values of π ∈ (π1, π2),
with π2 = 1

1−λ2(L) ;
(ii.3) (uniqueness): when π ∈ (π1, π2), the system admits ex-

actly three equilibria, the origin and the two nontrivial
equilibrium points ±x∗ 6= 0.

(iii) If λ2(L) is simple, when π = π2 the system undergoes a
second pitchfork bifurcation and new equilibria appear.

Proof in Appendix B. The proof of (ii.1) is omitted here due
to lack of space and is available in [24]. The proof of (iii) is
omitted since it is identical to the proof of (ii.1).

Remark 1 It follows from the assumption (A.1) that if the
system (5) admits an equilibrium point x∗ 6= 0, then −x∗ is
also an equilibrium point.

Remark 2 Differently from Theorem 1(iii), in Theorem 2(iii)
the assumption λ2(L) < 1 is not needed: if the network
G is structurally unbalanced and connected it is always true
that λ2(L) < 1, as shown in Lemma 2 below. Therefore,
if λ2(L) is simple, π2 = 1

1−λ2(L) is always well-defined
(i.e., strictly positive and greater than π1). On the other
hand, examples of structurally balanced graphs for which
λ2(L) > 1 are complete graphs, whose adjacency matrix is a
Euclidean distance matrix. This means that in the structurally
balanced case when λ2(L) > 1 the system (5) admits only
3 equilibrium points (0, ±x∗) for all values of π > π1 and
that the trajectories converge either to x∗ or −x∗. However,
this situation can never happen in the structurally unbalanced
case: if π is “large enough” (i.e., it is above the threshold π2)
the system (5) will always admit new equilibria (other than 0,
±x∗), which may be attractors.

Lemma 2 Let G be a signed connected network with nor-
malized signed Laplacian L. If G is structurally unbalanced,
λ2(L) < 1.

The proof is available in [24].
To conclude this part, we show that for π > π1 the 1-norm

of the equilibria of the system is upper bounded by π(n −
2ε(G)), where ε(G) is the frustration of the signed network.
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Moreover, if the matrix L is symmetric (i.e., if ∆ = δI),
we can show that the solutions of (5) are all bounded and
converge to a set Ωε(G), which implies that all the equilibria
of the system (5) belong to Ωε(G).

Theorem 3 Consider the system (5) where each nonlin-
ear function ψi(·), i = 1, ..., n, satisfies the properties
(A.1)÷(A.4). Let ε(G) be the frustration of the signed network
G defined in (2), and L its normalized signed Laplacian.

(i) If x∗ is an equilibrium point of (5), then ‖x∗‖1 ≤ π(n−
2ε(G)).

(ii) Let π > π1. Under the assumption that L is symmetric
(i.e., ∆ = δI), the trajectories of (5) asymptotically
converge to the set Ωε(G), where

Ωε(G) = {x ∈ Rn : ‖x‖1 ≤ π(n− 2ε(G))}.

Proof in Appendix C.

Proposition 1 Let G be a signed graph with normalized
signed Laplacian L, and assume that L is symmetric (i.e.,
∆ = δI). Then it is possible to derive an upper bound for the
social effort at the first bifurcation point, π1, which depends
on the frustration of the network ε(G):

1 ≤ π1 ≤ min
{ n

n− 2ε(G)
, π2

}
. (6)

The proof is available in [24]. Notice that if the frustration is
zero (i.e., the network is structurally balanced) then π1 = 1.

IV. DISCRETE-TIME

The Euler approximation of system (5) with step ε is

xi(k + 1) = (1− εδi)xi(k) + επ
∑
j 6=i

aijψj(xj(k)),

i = 1, ..., n. (7)

Let xk := x(k) = [x1(k) · · · xn(k)]T and ψ(xk) =
[ψ1(x1(k)) · · · ψn(xn(k))]T . Equation (7) can be rewritten in
a more compact form as follows:

xk+1 = (I − ε∆)xk + επAψ(xk). (8)

The Jacobian at the origin is given by:

Jπ = I − ε∆ + επA = I − εLπ (9)

where
Lπ = ∆− πA = ∆

(
I − π(I − L)

)
(10)

and L is the normalized signed Laplacian of the network. As in
Section III, we want to study how the social effort parameter π
affects the existence of the equilibria of the system (8), again
relying on tools from bifurcation analysis [28].

A local bifurcation occurs at the origin if the Jacobian Jπ
has an eigenvalue with absolute value equal to 1 (that is, equal
to ±1 since Jπ is symmetric and has real eigenvalues). When
π is small and in particular is such that all the eigenvalues of
Jπ have magnitude less than one, following the proof of [29,
Thm 2] it is possible to prove (under the additional condition
εmaxi δi < 1) that the origin is globally asymptotically stable

and hence the unique equilibrium point of the system (8). As
π grows, the magnitude of the eigenvalues of Jπ increases and
for values of π such that Jπ has a simple eigenvalue λ at ±1
the system (8) can undergo either a pitchfork (λ = +1) or a
period-doubling (λ = −1) bifurcation [28].

Let λi(Jπ) and λi(Lπ), i = 1, ..., n, be the eigenvalues of
Jπ and Lπ , respectively, which we assume to be arranged in
a nondecreasing order. We denote π1 the value of social effort
for which the biggest eigenvalue of Jπ crosses +1 and π1,d

the value of social effort for which the smallest eigenvalue of
Jπ crosses −1:

π1 : λn(Jπ1
) = 1, π1,d : λ1(Jπ1,d

) = −1. (11)

Remark 3 From (9), the biggest and smallest eigenvalues of
Jπ are given by

λn(Jπ) = 1− ελ1(Lπ), λ1(Jπ) = 1− ελn(Lπ),

which means that Jπ is Schur stable (i.e., its eigenvalues have
magnitude strictly less than one) if and only if the following
two conditions hold:

(i) λ1(Lπ) > 0, that is, Lπ is positive definite.
From (10) and since ∆ is positive definite, this condition
is equivalent to I − π(I − L) having (strictly) positive
eigenvalues, i.e., 0 < 1− π(1− λ1(L));

(ii) ελn(Lπ) < 2, that is, εLπ − 2I is negative definite.
Hence π1 is the value of social effort for which the smallest
eigenvalue of Lπ crosses 0, while π1,d is the value of social
effort for which the biggest eigenvalue of εLπ crosses 2:

π1 : λ1(Lπ1) = 0 ⇒ π1 =
1

1− λ1(L)
(12)

π1,d : λn(Lπ1,d
) =

2

ε
. (13)

In the analysis of the discrete-time model (8) (see Theo-
rem 4 below) it is relevant to know where π1,d lies compared
with π1. The next proposition shows that π1 < π1,d always
holds if the network is structurally balanced (λ1(L) = 0) or
if it is structurally unbalanced but λ1(L) > 0 is small.

Proposition 2 Assume that εmaxi δi < 1. If any of the two
following conditions on the signed graph G with normalized
signed Laplacian L is satisfied:

(i) G is structurally balanced (i.e., λ1(L) = 0), or
(ii) G is structurally unbalanced and λ1(L) < 2− λn(L),

then π1 < π1,d.

The proof is available in [24].
The next two lemmas show that if the system (8) admits a

nontrivial equilibrium point then π > π1 (Lemma 3), while if
it admits a period-2 orbit then π > π1,d (Lemma 4).

Lemma 3 Consider the system (8) where each nonlin-
ear function ψi(·), i = 1, ..., n, satisfies the properties
(A.1)÷(A.4). If x∗ 6= 0 is an equilibrium point of the
system (8) then π > π1.

Proof in Appendix D.
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Lemma 4 Consider the system (8) where each nonlin-
ear function ψi(·), i = 1, ..., n, satisfies the properties
(A.1)÷(A.4). If ε < 2

maxi δi
and the system (8) admits a

period-2 limit cycle (∃K > 0 such that xk+2 = xk for all
k ≥ K) then π > π1,d.

Proof in Appendix D.

Remark 4 The condition ε < 2
maxi δi

imposed by Lemma 4
represents an upper bound on the step size ε in the Euler
approximation.

We are now ready to state our results for the discrete-time
system (8), summarized in Theorem 4. Similarly to Theorem 2,
we show first that the origin is the unique equilibrium point
for the system when π < min{π1, π1,d} and that it is globally
asymptotically stable, see Theorem 4(i). However, differently
from the continuous-time case, when π crosses min{π1, π1,d}
two different behaviors can happen. If π1 < π1,d we ex-
pect the system (8) to undergo a pitchfork bifurcation when
π = π1 while if π1 > π1,d we expect a period-doubling
bifurcation when π = π1,d, see Theorem 4(ii). The special
case where π1 = π1,d is here not discussed, but the intuition
is that a Neimark-Sacker bifurcation occurs at the origin when
π = π1,d = π1 [28]. Observe also that π > π1 and π > π1,d

are necessary conditions (not only sufficient) in order for the
system (8) to admit a nontrivial equilibrium or a periodic
solution, respectively, as shown in Lemma 3 and Lemma 4.

Finally, notice that the following theorem holds also for
structurally balanced networks. However, in that case the con-
dition π1 < π1,d would always be satisfied (see Proposition 2)
meaning that the formulation of theorem could be simplified.

Theorem 4 Consider the system (8) where each nonlin-
ear function ψi(·), i = 1, ..., n, satisfies the properties
(A.1)÷(A.4). Assume that the signed graph G is structurally
unbalanced with normalized signed Laplacian L. Let Jπ , Lπ ,
π1 and π1,d be as in (9), (10), (12) and (13), respectively.
Assume that 1− εmaxi δi ≥ 0.

(i) If π < min{π1, π1,d} then the origin is the unique
equilibrium point of the system (8) and it is globally
asymptotically stable.

(ii) If π1 < π1,d and the biggest eigenvalue of Jπ1
,

λn(Jπ1) = +1, is simple, when π = π1 the system (8)
undergoes a pitchfork bifurcation;
If π1 > π1,d and the smallest eigenvalue of Jπ1,d

,
λ1(Jπ1,d

) = −1, is simple, when π = π1,d the system (8)
undergoes a period-doubling bifurcation.

Proof in Appendix E.
Notice that, compared with Theorems 1 and 2, Theorem 4

considers only the first bifurcation the system (8) undergoes
at the origin, i.e., it does not consider for instance secondary
bifurcations at the origin happening for values of π such that
λn−1(Jπ) = +1 or λ2(Jπ) = −1.

Corollary 1 Consider the system (8) where each nonlin-
ear function ψi(·), i = 1, ..., n, satisfies the properties

(A.1)÷(A.4). Let ε(G) be the frustration of the signed network
G defined in (2).

(i) If x∗ is an equilibrium point of (8), then ‖x∗‖1 ≤ π(n−
2ε(G)).

(ii) If ∆ = δI with δε < 1, the trajectories of (8) asymptot-
ically converge to the set {x ∈ Rn : ‖x‖1 ≤ πn}.

The proof is omitted since (i) follows from the observation
that the discrete- and continuous-time models share the same
equilibrium points, therefore the upper bound on the 1-norm of
the equilibria found in Theorem 3(i) still holds, and (ii) follows
from the fact that the nonlinearities are saturated (and can be
shown for instance using the Lyapunov function V (xk) =
‖xk‖1 − πn for all ‖xk‖1 > πn and V (xk) = 0 otherwise).

V. DISCUSSION AND INTERPRETATION OF THE RESULTS

Comparing Theorem 1 with Theorem 2, the general behav-
ior of the continuous-time system (5) (illustrated in Figure 1)
does not change when, instead of a structurally balanced net-
work, we assume that the network is structurally unbalanced.
However, while in the structurally balanced case (see Fig-
ure 1a) the first threshold value for the social effort parameter
π is constant (π1 = 1), in the structurally unbalanced case
(see Figure 1b) this value is strictly greater than 1 and in-
creases with the smallest eigenvalue of the normalized signed
Laplacian, λ1(L). In a recent work [21] we have shown that
λ1(L) approximates well the frustration of a signed network
G (measured by ε(G) introduced in equation (2)), while the
intuition is that λ2(L) is independent from the frustration
ε(G). As a consequence, a higher frustration ε(G) (reflecting a
situation where the system (5) is “far” from being monotone)
implies (i) a higher value of π1 and (ii) the shrinkage of the
interval (π1, π2) for which only two alternative equilibria are
admitted. These conclusions are illustrated in Example 2.

In the context of social networks the decision-making pro-
cess (4) can be summarized as follows:
• π < π1: No decision will be reached if the social effort

among the agents is small.
• π ∈ (π1, π2): The “right” level of commitment among

the agents leads to two possible (alternative) decisions.
If the signed social network is not structurally balanced,
a higher frustration implies that a higher effort will be
required from the agents in order to achieve this decision.

• π > π2: An overcommitment between the agents (high
value of social effort) leads to a situation where several
alternative decisions are possible.

When we instead compare Theorems 1 and 2 with Theorem 4,
we observe that the discrete-time system (8) exhibits a “richer”
behavior, in that it admits (stable) periodic solutions, as illus-
trated in Figure 2 (which, for the sake of simplicity, does not
consider secondary pitchfork or period-doubling bifurcations
at the origin). This is related to the presence of a new threshold
value for the parameter π, denoted π1,d: understanding where
π1,d lies compared with π1 plays a key role when investigating
the behavior of the system (8) over a signed network. In
particular, Proposition 2 suggests that the condition π1 > π1,d

cannot hold unless a signed network is structurally unbalanced
and has high frustration (i.e., λ1(L)� 0).
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(a) (b)

Figure 1: The system (5) undergoes two pitchfork bifurcations,
respectively for π = π1 and π = π2. The bifurcation diagram
for two components xi and xj is here shown for two different
signed networks. (a): Structurally balanced network (monotone
system). (b): Structurally unbalanced network.

(a) (b) (c)

Figure 2: The system (8) undergoes a pitchfork bifurcations
and a period-doubling bifurcation, respectively for π = π1

and π = π1,d. The bifurcation diagram for two components xi
and xj is here shown for three different signed networks. (a):
Structurally balanced network. (b): Structurally unbalanced
network with π1 < π1,d. (c): Structurally unbalanced network
with π1 > π1,d.

This implies first that, if we consider networks that are
structurally balanced (for which π1 < π1,d always holds) or
that are structurally unbalanced for which π1 < π1,d (typically,
with low frustration) the general behavior of the discrete-time
system (8) resembles that of its continuous-time counterpart,
see Fig. 2a and Fig. 2b: the crossing of a (pitchfork) bifur-
cation yields two (alternative) nontrivial equilibrium points
representing two possible (alternative) decisions. Hence, the
general idea that the higher is the frustration of the network
the higher is the social effort needed to converge to a nontrivial
equilibrium point still holds. Instead, if we consider networks
that are structurally unbalanced for which π1 > π1,d (typically,
with high frustration), see Fig. 2c, then there exists an interval
of values for the social effort parameter, (π1,d, π1), for which
the collective decision-making process still ends in a deadlock
situation where the opinions of the agents do not settle but
keep fluctuating: only by further increasing the commitment
among the agents the process can be settled and the community
can reach a decision. In conclusion, in the discrete-time model
the presence of high frustration in the graph leads to agents
who will never cease to change opinion (a somewhat artificial
behavior). Other recent works in the literature that propose
models characterized by fluctuations of opinions of the agents
are for instance [30], [31].

VI. NUMERICAL EXAMPLES

In this section we first illustrate the bound (6) in Proposi-
tion 1 (Example 1). As a byproduct we observe (numerically)
that the bound is tight if the smallest and largest eigenvalues
of L satisfy the condition λ1(L) < 2 − λn(L) (typically,
if the network does not have high frustration). Then, we
show the behavior of the system (5) over signed (structurally
unbalanced) networks with increasing frustration (Example 2
and Example 3). In Example 4 we show that when the
social effort parameter π crosses the second threshold π2 the
system admits multiple equilibria which are stable (i.e., several
decision states for the community are possible). Example 5
is used to illustrate a case which has not been treated by
our analysis. Indeed, in Example 5 we illustrate the behavior
of the system (5) in presence of symmetries implying an
algebraic multiplicity of λ1(L) higher than 1. The case where
the smallest eigenvalue of L is not simple is in fact not covered
by Theorem 2. However the intuition, supported by the reading
of [32], [33], is that when π > π1 the system admits multiple
(more than three) equilibria. Finally, in Example 6 we illustrate
the behavior of the discrete-time system (8) and compare it
with that of the continuous-time system (5).

If not specified otherwise, we assume that each nonlinear
function ψi(·) (i = 1, ..., n) is given by the hyperbolic
tangent ψ(ε) = tanh(ε). Moreover, to compute numerically
the frustration ε(G) of a signed network G we use the algorithm
proposed in [34].

Example 1 This example wants to illustrate the bound (6)
in Proposition 1 and show that it holds also for graphs
whose normalized signed Laplacian is not symmetric. In
Fig. 3 we consider two sequences of signed networks G with
n = 500 agents (in which the edge weights are drawn from
a uniform distribution and p = 0.8 is the edge probability)
and with increasing frustration ε(G). In the first sequence
(see Fig. 3a), each adjacency matrix A of the network is
rescaled so that |A|1 = δ1, which implies that the normalized
signed Laplacian L is symmetric. Instead, in the second
sequence (see Fig. 3b), each matrix L is not symmetric (but
is symmetrizable). As Fig. 3 illustrates, the bound (6) holds
for both sequences; moreover, when the frustration is small
(numerically, when the condition λ1(L) < 2 − λn(L) is
satisfied) the upper bound n

n−2ε(G) for π1 is tight (this is not
surprising since we know that λ1(L) approximates well the
frustration).

Example 2 We consider three signed networks with n = 20
agents in which the edge weights are drawn from a uniform
distribution and p = 0.5 is the edge probability. These
networks are chosen to be structurally unbalanced and with
increasing frustration. In Fig. 4 the euclidean norm of the equi-
libria of the system (5) for values of π in {0.005, 0.010, ..., 4}
is depicted. As Table I shows, the smallest eigenvalue of the
normalized signed Laplacian increases with the frustration of
the network while the second smallest eigenvalue remains
almost constant, hence the interval for π for which the system
admits only two equilibria becomes smaller (compare Fig. 4a
and Fig. 4c).
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(a) (b)

Figure 3: Example 1. Plot of π1, π2 and n
n−2ε(G) , for two

sequences of signed networks with increasing frustration ε(G).
(a): Sequence 1: for each network, the normalized signed
Laplacian L is symmetric. (b): Sequence 2: for each network,
the matrix L is not symmetric. A full (resp., empty) symbol
means that λ1(L)<2−λn(L) (resp., λ1(L) > 2−λn(L)); for
clarity, a dashed line shows the maximum value of frustration
above which the condition λ1(L) < 2−λn(L) does not hold.

(a) (b) (c)

Figure 4: Example 2. Norm of the equilibrium points of the
system (5) as a function of π. The networks G we use in this
example are structurally unbalanced, with increasing frustra-
tion ε(G), see Table I. (a): ε(G) = 0.677. (b): ε(G) = 4.285.
(c): ε(G) = 5.536.

ε(G) λ1 λ2 π1 π2

(a) 0.677 0.065 0.500 1.069 2.000
(b) 4.285 0.332 0.491 1.496 1.966
(c) 5.536 0.475 0.499 1.905 1.995

Table I: Example 2. Values of frustration, first two eigenvalues
of the normalized signed Laplacian and bifurcation points for
the three cases, (a), (b) and (c), depicted in Figure 4.

Example 3 Consider a network G with n = 100 agents in
which the edge weights are drawn from a uniform distribution
and p = 0.8 is the edge probability. Let A = [aij ] be its
weighted nonnegative adjacency matrix. Consider now a se-
quence of signed networks Gβ with weighted adjacency matri-
ces Aβ = [aβij ] constructed such that |Aβ | = A and their sig-
nature is dependent on a parameter β ∈ {0, 0.05, 0.1, ..., 1}:
if aij 6= 0 then aβij 6= 0 and P [aβij < 0] = β. When
β = 1, A1 = − |A|. As β increases also the frustration of the
networks increases.

For each network, we numerically compute the equilibria
x∗ of the system (5) for values of π in {1, 1.05, ..., 9} and
their 1-norm ‖x∗‖1: let X = {x∗ ∈ Rn: x∗ is an equilibrium
point of the system (5)} be the set of equilibria. In Fig. 5,

for each network of the sequence we plot
1

π
max
x∗∈X

‖x∗‖1 (the
maximum 1-norm of the equilibrium points divided by π)

Figure 5: Example 3. Plot of the maximum 1-norm of x∗,
where x∗ is an equilibrium point of the system (5), for a
sequence of signed networks with increasing frustration. The
values of n− 2ε(Gβ) are shown as dotted lines.

Figure 6: Example 4. Evolution of state variable x1(t) for
50 random initial conditions and π = 4. The signed network
considered in this example corresponds to the one used to
obtain Fig. 4c (π2 = 1.995).

for each value of π; the colormap illustrates the sequence of
signed networks Gβ with increasing frustration. As Theorem 3
states, the maximum 1-norm of the equilibria is upper bounded
by π(n−2ε(Gβ)), where ε(Gβ) indicates the frustration of Gβ :
as the frustration increases, the bound decreases.

Example 4 When π > π2, Theorem 2(iii) proves that the
system (5) admits multiple equilibrium points. Through nu-
merical simulations it is possible to see that some of these
equilibria may be stable. In Fig. 6 the multistability for the
system (5) is highlighted as we depict the evolution of the
first component of x(t) for 50 random initial conditions and
π = 4 > π2 = 1.995. The same signed network as case (c) in
Fig. 4 and Table I is used.

Example 5 Consider the system (5) where each nonlin-
ear function ψi(·), i = 1, ..., n, satisfies the properties
(A.1)÷(A.4). Moreover, assume that

ψi(ε) = ψj(ε) =: ψu(ε), ∀i, j = 1, ..., n, ε ∈ R

(identical nonlinearities). (A.5)

Notice that under these assumptions Pψ(x) = ψ(Px) for all
signed permutation matrices P .
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(a)

(b)

Figure 7: Example 5. (a): α, β, γ as functions of π. (b):
Equilibria of the system (5) as described by (14), for
π = 2.001, 2.002, . . . , 4: the origin (black dot), ±Px∗1 (blue
branches) and ±Px∗2 (red branches).

Let n = 3 and the adjacency matrix of the network be

A =

 0 −1 −1
−1 0 −1
−1 −1 0

 = I − 11T ,

which implies that the signed graph described by A is struc-
turally unbalanced and that the smallest eigenvalue of the
normalized signed Laplacian L, λ1(L), is not simple (the
spectrum of L is Λ(L) =

{
1
2 ,

1
2 , 2
}

). This represents an
interesting case for our analysis since the (algebraic and
geometric) multiplicity of the smallest eigenvalue of L is
2, hence we cannot straightforwardly apply Theorem 2(ii).
However, in this case the equilibria of the system (5) for
π > π1 = 1

1−λ1(L) = 2 can be computed explicitly.
Under assumption (A.5), let π > 2 and α(π), β(π) >

0, γ(π) < 0 be such that

α :
ψu(α)

α
=

2

π
, β, γ :

{
γ = −πψu(β)

ψu(β) + 2
πβ + ψu(γ) = 0,

see also Fig. 7a. Then x∗1 = α[1,−1, 0]T , x∗2 = [β, β, γ]T are
equilibrium points of (5). Indeed

πHψ(x∗1) = πψu(α)H
x∗1
α

=
π

2

ψu(α)

α
x∗1 = x∗1,

πHψ(x∗2) = −π
2

ψu(β) + ψu(γ)
ψu(β) + ψu(γ)

2ψu(β)

 =

ββ
γ

 = x∗2.

Let Φ(x, π) = −x + πHψ(x). Under assumption (A.1),
Φ(x, π) is odd. Moreover, since PHPT = H for all per-
mutation matrices P ∈ R3×3, it holds that

PΦ(x, π) = Φ(Px, π) ∀P ∈ S3,

that is, Φ(x, π) is S3-equivariant (S3 indicates the symmetric
group of order 3, i.e., the group of all permutations of a three-
element set). Hence if x(t) is a solution of (5), then ±Px(t),
P ∈ S3, is also a solution of (5) [32].

To conclude, the equilibria of (5) can be written as

±Px∗1, ±Px∗2 ∀ P ∈ S3. (14)

Figure 7b shows the equilibrium points of the system (5),
where the nonlinear function ψu is the hyperbolic tangent
ψu(ε) = tanh(ε), as π increases.

Example 6 This last example wants to illustrate the results
of Theorem 4 for the discrete-time system (8) and compare
them with the results of Theorem 2 for the continuous-time
system (5). We consider two structurally unbalanced networks
(G1 and G2) with n = 6 agents in which the edge weights are
drawn from a uniform distribution and p = 0.9 is the edge
probability. The network G1 is such that 1 < π1 = 1.53 <
1.89 = π1,d while the network G2 is such that 1 < π1,d =
1.40 < 1.63 = π1, where π1 and π1,d are defined in (12) and
(13), respectively.

Figure 8 plots the trajectories of the discrete-time sys-
tem (8) with ε = 0.3 (top panels) and the trajectories
of the continuous-time system (5) (bottom panels) for dif-
ferent values of π and the same initial condition x(0) =
[−1.51, 1.81,−0.12, 1.23, 0.49, 0.91]T : in Fig. 8a we consider
the network G1, while in Fig. 8b the network G2. When
π1 < π1,d (see Fig. 8a), we expect the trajectories of both
the discrete- and continuous-time system to converge to the
origin for all values of π less than π1 (see left panels) and
to converge to a nontrivial equilibrium point for values of π
greater than (and in a neighborhood of) π1 (see right panels).
When π1 > π1,d (see Fig. 8b), we expect the trajectories of
both the discrete- and continuous-time system to converge to
the origin for all values of π less than π1,d (see left panels).
However, when π ∈ (π1,d, π1) (see middle panels), while the
trajectories of continuous-time system still converge to the
origin, the discrete-time system admits a periodic solution.
Finally, for both the discrete- and continuous-time system to
admit a nontrivial equilibrium point π needs to be greater than
π1 (see right panels).

VII. CONCLUSIONS

In this work we have extended the analysis of a decision-
making process in a community of agents, described by the
nonlinear interconnected model introduced in [1], [18], to the
case in which the signed network representing the group of
agents is not structurally balanced. We provided necessary
and sufficient conditions for the existence (and stability) of
equilibrium points of the system showing that, qualitatively,
the bifurcation behavior of the system does not change when
we assume that it is not monotone, i.e., that the signed social
network is not structurally balanced. What changes, however,
is the threshold at which the bifurcation occurs. In particular,
we have shown in the paper that this bifurcation threshold
grows with the frustration of the signed network.

Given the interpretation of the bifurcation parameter as
“social effort” of the network of agents, from a sociological
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(a)

(b)

Figure 8: Example 6. Trajectories of the discrete-time sys-
tem (8) with ε = 0.3 (top panels) vs trajectories of the
continuous-time system (5) (bottom panels) for different val-
ues of π. (a): Network G1, π1 < π1,d. (b): Network G2,
π1 > π1,d.

point of view, this behavior is reasonable and plausible: the
more “disorder” (i.e., frustration) a social network contains,
the more difficult it is for its actors to achieve a common
decision.
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APPENDIX A
TECHNICAL PRELIMINARIES

In this section we introduce definitions and technical theo-
rems and lemmas from linear algebra that will be necessary
in order to prove the main results of this work.

Definition 1 ([35], [36]) A matrix A ∈ Rn×n is (diagonally)
symmetrizable if DA is symmetric for some diagonal matrix
D with positive diagonal entries. The matrices DA and D are
called symmetrization and symmetrizer of A, respectively.

Theorem 5 (Ostrowski, 4.5.9 in [27]) Let A,S ∈ Rn×n

with A symmetric and S nonsingular. Let the eigenvalues of
A, SAST and SST be arranged in nondecreasing order. For
each k = 1, ..., n, there exists a positive real number θk such
that λ1(SST ) ≤ θk ≤ λn(SST ) and λk(SAST ) = θkλk(A).

The following lemma results from Theorem 5.

Lemma 5 Let B ∈ Rn×n be symmetrizable, and S =
diag {s1, ..., sn} ∈ Rn×n be a positive definite diagonal
matrix. Let the eigenvalues of B, BS, SB and S

1
2BS

1
2 be

arranged in nondecreasing order. Then, for all k ∈ {1, ..., n},
it holds that ∃ θk ∈

[
mini{si},maxi{si}

]
such that

λk(BS) = λk(SB) = λk(S
1
2BS

1
2 ) = θkλk(B).

The proof is available in [24].

APPENDIX B
PROOF OF THEOREM 2

To improve readability, the proof of Theorem 2 is divided
as follows: in Section B-A we prove (i); in Sections B-B,
B-C we prove the stability (ii.2) and uniqueness (ii.3) part,
respectively, of (ii).

A. Proof of Theorem 2(i)

The condition for the existence of a unique equilibrium
point for the system (5) can be rewritten in terms of the biggest
eigenvalue of the normalized interaction matrix H = ∆−1A =
I − L. Define the following symmetric matrix:

Hsym := ∆−
1
2A∆−

1
2 = ∆

1
2H∆−

1
2 ∼ H, (15)

By construction, H and Hsym have the same eigenvalues.
Proof. First, notice that since λi(L) = 1 − λn−i+1(H) for
all i = 1, ..., n, then π1 = 1

1−λ1(L) = 1
λn(H) .

Let V : Rn → R+ be the Lyapunov function described by

V (x) =

n∑
i=1

∫ xi

0

ψi(s) ds. (16)

Since each function ψi(·) is monotonically increasing and
ψi(s) = 0 if and only if s = 0, then V (x) > 0 ∀x ∈ Rn \{0}
and V (0) = 0. Moreover, V (x) is radially unbounded.

From the assumptions (A.1), (A.2) and (A.4), we know that

xi


> ψi(xi), if xi > 0 (i.e., ψi(xi) > 0)

< ψi(xi), if xi < 0 (i.e., ψi(xi) < 0)

= 0, if xi = 0,

i.e., ψ(x)T∆x > ψ(x)T∆ψ(x) > 0 since x 6= 0. Hence,
computing the derivative of V along the trajectories gives

V̇ (x) = ψ(x)T ẋ = ψ(x)T [−∆x+ πAψ(x)]

= −ψ(x)T∆x+ ψ(x)T∆
1
2 (πHsym)∆

1
2ψ(x)

< −ψ(x)T∆
1
2 (I − πHsym)∆

1
2ψ(x)

≤ −
(

1− π

π1

)
ψ(x)T∆ψ(x)

Since π ≤ π1, then V̇ (x) < 0 for all x 6= 0, i.e., the origin is
globally asymptotically stable, hence the unique equilibrium
point for the system (5).

B. Proof of Theorem 2(ii.2): stability

Before stating the proof we show that, when π ∈ (π1, π2),
all the nontrivial equilibrium points x∗ 6= 0 of the system (5)
(if present) are locally asymptotically stable. This lemma will
be used in the proof of both the stability and uniqueness part
of Theorem 2(ii). Moreover, notice that the threshold values
π1 and π2 can be rewritten as follows:

π1 =
1

λn(H)
, π2 =

1

λn−1(H)
.

Lemma 6 Under the assumptions of Theorem 2(ii), when π ∈
(π1, π2), if x∗ 6= 0 is a (nontrivial) equilibrium point of the
system (5) then it is locally asymptotically stable.

Proof. Let x∗ 6= 0 be an equilibrium point for the system (5),

x∗ = πHψ(x∗). (17)

To prove that x∗ is locally asymptotically stable, consider the
linearization around x∗,

ẋ = ∆
(
−I + πH

∂ψ

∂x
(x∗)

)
(x− x∗). (18)

The equilibrium point x∗ is asymptotically stable for the
system (18), and consequently locally asymptotically stable for
the system (5), if the matrix ∆

(
−I + πH ∂ψ

∂x (x∗)
)

is Hurwitz
stable, i.e., its eigenvalues are strictly negative. Since ∆ is
diagonal and positive definite, this holds if and only if the
matrix −I+πH ∂ψ

∂x (x∗) is Hurwitz stable. The following proof
shows that the largest eigenvalue of −I+πH ∂ψ

∂x (x∗) is strictly
smaller than 0, i.e., that πλn

(
H ∂ψ

∂x (x∗)
)
< 1. It is a two-steps

proof, showing first that πλn
(
H ∂ψ

∂x (x∗)
)
≤ 1 and then by

contradiction that πλn
(
H ∂ψ

∂x (x∗)
)
6= 1.
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Step 1. From the assumptions (A.1), (A.2) and (A.4), for all
i = 1, ..., n it holds that

x∗i > ψ(x∗i ) >
∂ψi

∂xi
(x∗i )x

∗
i , if x∗i > 0

x∗i < ψ(x∗i ) <
∂ψi

∂xi
(x∗i )x

∗
i , if x∗i < 0

x∗i = ψ(x∗i ) = 0, ∂ψi

∂xi
(x∗i ) = 1, if x∗i = 0.

Therefore, ∃ Ξ(x∗) = diag {ξ1(x∗1), ..., ξn(x∗n)} ∈ Rn×n such
that, ∀ i = 1, ..., n,

ψ(x∗i ) = ξi(x
∗
i ) ·

∂ψi
∂xi

(x∗i ) · x∗i ,{
ξi(x

∗
i ) > 1, 0 < ξi(x

∗
i ) ·

∂ψi

∂xi
(x∗i ) < 1, if x∗i 6= 0

ξi(x
∗
i ) = 1, ξi(x

∗
i ) ·

∂ψi

∂xi
(x∗i ) = 1, if x∗i = 0.

This can be rewritten in compact form as

ψ(x∗) = Ξ(x∗) · ∂ψ
∂x

(x∗) · x∗, (19)

where

diag {Ξ(x∗)} ≥ 1, 0 < diag
{

Ξ(x∗) · ∂ψ
∂x

(x∗)

}
≤ 1. (20)

To simplify the notation, we will neglect the dependence from
x∗ in what follows; moreover, we define Ψx := ∂ψ

∂x (x∗). From
(17) and (19), it follows that

x∗ = (πH ·Ψx · Ξ)x∗, (21)

that is, (1, x∗) is an eigenpair of πH Ψx Ξ. Therefore, by
Lemma 5 with B = πH and S = ΨxΞ, and by (20), it
follows that for all k ∈ {1, ..., n}, ∃ θk ∈ (0, 1] such that
λk(πH Ψx Ξ) = θkπλk(H). In particular ∃ θn, θn−1 ∈ (0, 1]
such that

λn(πH Ψx Ξ) = θnπλn(H), (22)
λn−1(πH Ψx Ξ) = θn−1πλn−1(H) < θn−1 ≤ 1, (23)

where πλn−1(H) = π
π2

< 1 under the assumption π ∈
(π1, π2). Then, (21) and (23) yield 1 = λn(πH Ψx Ξ).

Applying again Lemma 5 with B = πH Ψx and S = Ξ,
there exists θ ∈ [mini{ξi},maxi{ξi}] such that

1 = λn(πH Ψx Ξ) = θπλn(H Ψx) ≥ πλn(H Ψx) > 0,

since ξi ≥ 1 for all i implies θ ≥ 1. Hence, πλn(H Ψx) ≤ 1.
Step 2. Suppose by contradiction that πλn(H Ψx) = 1. First,
we need to define the “symmetric versions” of the matrices
H Ψx and H Ψx Ξ.

[HΨx]sym := (Ψx)
1
2Hsym(Ψx)

1
2

∼ (∆Ψx)−
1
2 ·
(

(Ψx)
1
2Hsym(Ψx)

1
2

)
·(∆Ψx)

1
2

= (∆−
1
2Hsym∆

1
2 ) Ψx = H Ψx

with Hsym defined in (15), and

[HΨxΞ]sym := (Ψx Ξ)
1
2Hsym(Ψx Ξ)

1
2

∼ (∆Ψx Ξ)−
1
2 ·
(

(Ψx Ξ)
1
2Hsym(Ψx Ξ)

1
2

)
·(∆Ψx Ξ)

1
2

= (∆−
1
2Hsym∆

1
2 ) Ψx Ξ = H Ψx Ξ.

Moreover, [HΨxΞ]sym = Ξ
1
2 [HΨx]sym Ξ

1
2 by construction.

From similarity, πλn([HΨx]sym) = 1. Let v be the right eigen-
vector of π [HΨx]sym associated with its largest eigenvalue
πλn([HΨx]sym) = 1. From (21), since (1, x∗) is an eigenpair
of πH Ψx Ξ (with 1 being the largest eigenvalue, as proven
previously), it follows that (1, (∆Ψx Ξ)

1
2x∗) is an eigenpair

of π [HΨxΞ]sym (with 1 being the largest eigenvalue). To
summarize

[HΨxΞ]sym = Ξ
1
2 [HΨx]sym Ξ

1
2 ;

πλn([HΨx]sym) = 1 and π[HΨx]sym v = v;

πλn([HΨxΞ]sym) = 1 and
π[HΨxΞ]sym (∆Ψx Ξ)

1
2x∗ = (∆Ψx Ξ)

1
2x∗.

(24)

Applying Rayleigh’s Theorem [27, Thm 4.2.2] with
π[HΨxΞ]sym, one obtains

1 = πλn([HΨxΞ]sym) = π max
y 6=0

yT [HΨxΞ]sym y

yT y

= π max
y 6=0

(yT Ξ
1
2 ) · [HΨx]sym · (Ξ

1
2 y)

yT y

⇓ with y = Ξ−
1
2 v 6= 0

≥ π
vT [HΨx]sym v

vTΞ−1v
=

vT v

vTΞ−1v
. (25)

The inequality vT v ≤ vTΞ−1v, which can be rewritten as
n∑
i=1

v2
i ≤

n∑
i=1

v2
i

ξi
=
∑
i: ξi=1

v2
i +

∑
i: ξi>1

v2
i

ξi
,

holds, as equality, if and only if

vi = 0 ∀ i s.t. ξi > 1 (⇔ x∗i 6= 0). (26)

Hence, (25) can only hold as equality if (26) holds, which
further implies that Ξ

1
2 v = v and consequently that (1, v) is an

eigenpair of π[HΨxΞ]sym (with 1 being the largest eigenvalue).
Indeed

π[HΨxΞ]sym v = π Ξ
1
2 [HΨx]sym Ξ

1
2 v

= π Ξ
1
2 [HΨx]sym v = Ξ

1
2 v = v.

Since λn(π[HΨxΞ]sym) = 1 is simple, as shown in (22) and
(23), it follows that v should be equivalent to the correspond-
ing right eigenvector of π[HΨxΞ]sym, i.e., (∆Ψx Ξ)

1
2x∗. This

however yields a contradiction, since by (26) vTx∗ = 0 (in
particular vi = 0 for all x∗i 6= 0 and vi 6= 0 for at least one i
s.t. x∗i = 0).

To conclude, πλn(H Ψx) < 1 and the matrix −I +
πH ∂ψ

∂x (x∗) is Hurwitz stable, which implies that the nontrivial
equilibrium point x∗ is locally asymptotically stable.

Finally, we are ready to prove Theorem 2(ii.2): stability.
Proof of Theorem 2(ii.2). The linearized system around the
origin is ẋ = ∆(−I +πH)x (given assumption (A.2)), where
∆ is positive definite and −I+πH has eigenvalues {πλ1(H)−
1, . . . , πλn(H)− 1}. When π > π1, the matrix −I + πH has
at least one positive eigenvalue, which proves the instability
of the origin as equilibrium point of (5).
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Instead, let x∗ 6= 0 be an equilibrium point of the system 5,
whose existence is shown in Theorem 2(ii.1). To prove its sta-
bility we can apply Lemma 6, which shows that if x∗ 6= 0 is an
equilibrium point of (5) then it must be locally asymptotically
stable.

C. Proof of Theorem 2(ii.3): uniqueness

Let f(x, π) = ∆[−x+ πHψ(x)]. We can divide the proof
into two parts. (i) We prove that in a neighborhood of π1 the
system admits only 3 equilibria. (ii) We prove, by contradic-
tion, that there are no bifurcation points for π ∈ (π1, π2). We
use Lemma 6 which proves that all the nontrivial equilibrium
points x̄ of the system (5) are locally asymptotically stable,
hence isolated and with each matrix ∂f

∂x (x̄, π̄) Hurwitz.
(i). The existence is shown in Theorem 2(ii.1), where it is

also proven that the bifurcation is a pitchfork. This means that
in a neighborhood of π1 the system (5) admits exactly three
equilibrium points: the origin and two nontrivial equilibrium
points, ±x∗ 6= 0.

(ii). The necessary condition for an equilibrium point (x̄, π̄)
(where π̄ ∈ (π1, π2)) to be a bifurcation point is that the Jaco-
bian ∂f

∂x (x̄, π̄) = ∆[−I+π̄H ∂ψ
∂x (x̄)] is not invertible (i.e., there

is an i ∈ {1, ..., n} such that π̄λi(H ∂ψ
∂x (x̄)) = 1). Suppose by

contradiction that, for π̄ ∈ (π1, π2), x̄ is an equilibrium point
of the system (5), i.e., x̄ = π̄Hψ(x̄), and a bifurcation point,
i.e., ∃ i s.t. π̄λi(H ∂ψ

∂x (x̄)) = 1. However, Lemma 6 shows that
if x̄ 6= 0 is an equilibrium point of (5) then it must be locally
asymptotically stable., i.e., π̄λn(H ∂ψ

∂x (x̄)) < 1. Moreover, if
x̄ = 0, π̄λn−1(H) < 1 < π̄λn(H) for π̄ ∈ (π1, π2). Hence, x̄
cannot be a bifurcation point.

To conclude, we know that the system (5) admits three
equilibria (0, x∗, −x∗) and that it cannot bifurcate further from
them for values of π ∈ (π1, π2). Hence, the only possible
equilibrium points for the system are the origin and those
originated from the first bifurcation at π = π1.

APPENDIX C
PROOF OF THEOREM 3

In the following proofs we use the notation Sx :=
diag {sign (x)} where x ∈ Rn and the signum function is
defined as sign (y) = 1 if y ≤ 0 or sign (y) = −1 if y < 0,
where y ∈ R.

Remark 5 The frustration of the network G is defined in
equation (2), which can be rewritten as follows:

2ε(G) = min
S=diag{s1,...,sn}

si=±1 ∀i

1T (|H| − SHS)1

= n− max
S=diag{s1,...,sn}

si=±1 ∀i

1TSHS1

= n− max
S=diag{s1,...,sn}

si=±1 ∀i

1TS

(
H +HT

2

)
S1.

Remark 6 Let

u∗ = Su∗1 where Su∗ = arg max
S=diag{s1,...,sn}

si=±1 ∀i

1TSHS1, (27)

that is, 2ε(G) = n − 1TSu∗HSu∗1. From the results on
(symmetric) Hopfield neural networks (see [22], [38]) we
know that the vector u∗ satisfies u∗ = sign

((
H+HT

2

)
u∗
)

.
If H is symmetric, then u∗ = sign

(
HTu∗

)
, meaning that the

vector Su∗sign
(
HTSu∗1

)
= Su∗sign (HSu∗1) has all strictly

positive components (equal to 1).

A. Proof of Theorem 3(i)

The proof can be divided into three steps. First, we show
that if x∗ is an equilibrium point of the system (5) and H
is symmetric, then ‖x∗‖1 ≤ π(n − 2ε(G)). Then, we show
that if H is not symmetric and x∗ is such that x∗i 6= 0 for
all i (or, |x∗| > 0) we can apply the same reasoning to prove
that ‖x∗‖1 ≤ π(n − 2ε(G)). Finally, we complete the proof
and show that each equilibrium point x∗ of the system (5)
(without assuming that H is symmetric) satisfies the inequality
‖x∗‖1 ≤ π(n− 2ε(G)).

Step 1. We first consider the particular case of the matrix
H = ∆−1A being symmetric, that is, ∆ = δI .

Let x∗ be an equilibrium point of the system (5), that is,
x∗ = πHψ(x∗) and let Sx∗ be its signature, i.e., |x∗| =
Sx∗x

∗. It follows that

|x∗| = π Sx∗Hψ(x∗) = π |Hψ(x∗)| = π Sx∗HSx∗ |ψ(x∗)| .

Observe that SHψ(x∗) = Sx∗ = Sψ(x∗). Then

‖x∗‖1
π

=
1T |x∗|
π

= 1T |Hψ(x∗)| = 1TSx∗HSx∗ |ψ(x∗)|

and

max
x∗∈Rns.t.

x∗=πHψ(x∗)

‖x∗‖1
π

= max
x∗∈Rns.t.

x∗=πHψ(x∗)

1T |Hψ(x∗)| ≤ max
u∈Rns.t.
SHu=Su
−1≤u≤1

1T |Hu| .

because the constraint x∗ = πHψ(x∗) (i.e., x∗ is an equi-
librium point) implies the constraint SHψ(x∗) = Sψ(x∗), and
|ψi(xi)| ≤ 1 ∀ xi ∈ R. Then

max
x∗∈Rns.t.

x∗=πHψ(x∗)

‖x∗‖1
π
≤ max

u∈Rns.t.
SHu=Su, −1≤u≤1

1T |Hu|

= max
u∈Rn s.t. −1≤u≤1

1TSuHSu |u| (28a)

= max
Su=diag{su,1,...,su,n}

su,i=±1 ∀i

1TSuHSu1 (28b)

= n− 2ε(G).

Notice that 1TSuHSu |u| ≤
∣∣1TSuHSu∣∣1 for all u ∈ Rn

s.t. |u| ≤ 1. The equality between (28a) and (28b) means that
the maxima are obtained when u lies in the corners of the
hypercube |u| ≤ 1 (i.e., |u| = 1). In particular, u∗ defined
in (27) is a solution of this maximization problem since it
is feasible and sign

(
1TSu∗HSu∗

)
= sign

(
1TSu∗H

)
Su∗ =

1T ≥ 0, meaning that 1TSu∗HSu∗ =
∣∣1TSu∗HSu∗ ∣∣.

Step 2. Let x∗ be an equilibrium point of the system (5) and
assume that x∗i 6= 0 for all i. In this step we do not assume the
symmetry of the matrix H . Following the reasoning of Step 1,
and by adding the additional constraint |u| > 0 (which comes
from x∗i 6= 0 for all i), it is still possible to prove (see below)
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that the maxima are obtained when u lies in the corners of
the hypercube |u| ≤ 1 (which yields the equivalence between
(28a) and (28b)). This is equivalent to show that the maxima
are obtained when u is s.t. 1TSuHSu ≥ 0. Let

ũ = arg max
u∈Rn s.t. −1≤u≤1, |u|>0

1TSuHSu |u|

and vT = 1TSũHSũ. Suppose, by contradiction, that ∃ j s.t.
vj < 0 (and ũj 6= 0, since |ũ| > 0). Define ū s.t. Sū = Sũ
and

|ūj | =

{
1, if vj ≥ 0

ε |ũj | , if vj < 0

with 0 < ε < 1 (which means that |ū| ≤ 1 and |ū| > 0, i.e.,
ū is a feasible point of the maximization problem). Then

1TSūHSū |ū| = vT |ū| =
∑
j:vj≥0

vj |ūj |+
∑
i:vj<0

vj |ūj |

=
∑
j:vj≥0

vj +
∑
j:vj<0

vjε |ũj |

≥
∑
j:vj≥0

vj |ũj |+
∑
j:vj<0

vjε |ũj |

>
∑
j:vj≥0

vj |ũj |+
∑
i:vj<0

vj |ũj | = 1TSũHSũ |ũ| ,

which implies a contradiction.
Step 3. Finally, we want to extend the idea presented in the

previous steps to show, without imposing any constraint on H
or x∗ (except for being an equilibrium point of the system (5)),
that ‖x∗‖1 ≤ π(n − 2ε(G)). In this case, assume that x∗i =
0 for some i: let n0 (resp., n − n0) be the number of zero
(resp., nonzero) components of x∗i and let P be a permutation

matrix s.t. Px∗ =

[
x∗nz
0

]
, where x∗nz ∈ Rn−n0 and |x∗nz| > 0.

Let Pψ(x∗) =

[
ψ(x∗nz)

0

]
and PHPT =

[
Hnz ?
? ?

]
. Then,

‖x∗‖1 = ‖x∗nz‖1, x∗nz = πHnzψ(x∗nz) and (following the
reasoning of Step 2)

‖x∗‖1
π
≤ max
Snz=diag{s1,...,sn−n0}

si=±1 ∀i

1Tn−n0
SnzHnzSnz1n−n0

.

Notice that for all signature matrices Snz =
diag {s1, ..., sn−n0

} ∈ Rn−n0,n−n0 with si = ±1 ∀i,
the following inequality holds:

1Tn−n0
SnzHnzSnz1n−n0

=
([
1Tn−n0

0Tn0

]
P
)
·
(
PT
[
Snz 0
0 In0

]
P
)

·H·
(
PT
[
Snz 0
0 In0

]
P
)
·
(
PT
[
1n−n0

0n0

])
≤ max
u∈Rns.t. |u|≤1

uTHu = n− 2ε(G).

Summarizing, we have shown that ‖x∗‖1 ≤ π(n− 2ε(G)).

B. Proof of Theorem 3(ii)

From Theorem 3(i) we know that the set

Ωε(G) = {x ∈ Rn : ‖x‖1 ≤ π(n− 2ε(G))}

contains all equilibria of the system (5). We now want to
prove that Ωε(G) is attractive when the signed normalized
Laplacian L or, equivalently, the normalized interaction matrix
H = ∆−1A = I − L, is symmetric (i.e., ∆ = δI).

Let V : Rn → R+ be the Lyapunov function described by

V (x) =

{
1
δ

(
‖x‖1 − π(n− 2ε(G))

)
, x /∈ Ωε(G)

0, x ∈ Ωε(G)

. (29)

Since ∆ is positive definite then V (x) > 0 for all x /∈
Ωε(G). Moreover, V (x) is radially unbounded. Let Sx :=
diag {sign (x)} (observe that Sx = Sψ(x)). The upper Dini
derivative of V along the trajectories (5) (with ∆ = δI) gives

d+V (x) = lim sup
s→0+

V (x+ sẋ)− V (x)

s

=
1

δ
lim sup
s→0+

∑
i |xi + sẋi| − |xi|

s

=
1

δ

∑
i

d+ |xi| =
1

δ

n∑
i=1

sign (xi) ẋi

= 1T∆−1Sxẋ = 1TSx[−x+ πHψ(x)]

= −‖x‖1 + π1TSxHψ(x)

= −‖x‖1 + π1TSxHSx |ψ(x)| ,
≤ −‖x‖1 + π max

u∈Rn s.t. |u|≤1
1TSuHu

Again, the intuition is that 1TSuHu = 1TSuSHu |Hu| ≤
1T |Hu|, which means that the maxima of 1TSuHu are
obtained when SHu = Su. Hence, following the reasoning
of the proof of Theorem 3, we conclude that for all x /∈ Ωε(G)

d+V (x) ≤ −‖x‖1 + π(n− 2ε(G)) < 0. �

APPENDIX D
PROOF OF LEMMA 3 AND LEMMA 4

Proof of Lemma 3. Assume, by contradiction, that π ≤ π1

which implies that Lπ is positive semidefinite (positive definite
if π < π1), see Remark 3. Let x∗ 6= 0 be an equilibrium point
of (8), that is, ∆x∗ = πAψ(x∗) = ∆ψ(x∗)−Lπψ(x∗). Then,

0 < ψ(x∗)T∆(x∗ − ψ(x∗)) = −ψ(x∗)TLπψ(x∗) ≤ 0,

which leads to a contradiction. Hence, π > π1.

Proof of Lemma 4. Assume, by contradiction, that π ≤ π1,d

which implies that εLπ−2I is negative semidefinite (negative
definite if π < π1,d), see Remark 3. Assume that the system (8)
admits a period-2 limit cycle: ∃ K > 0 such that xk+2 = xk 6=
0 for all k ≥ K, that is{

xk = (I − ε∆)xk+1 + επAψ(xk+1)

xk+1 = (I − ε∆)xk + επAψ(xk),

which implies that

0 = (2I − ε∆)(xk+1 − xk) + επA(ψ(xk+1)− ψ(xk)).
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Then,

0 = (ψ(xk+1)− ψ(xk))T (2I − ε∆)(xk+1 − xk)

+ επ(ψ(xk+1)− ψ(xk))TA(ψ(xk+1)− ψ(xk))

> (ψ(xk+1)− ψ(xk))T (2I − ε∆ + επA)(ψ(xk+1)− ψ(xk))

= (ψ(xk+1)− ψ(xk))T (2I − εLπ)(ψ(xk+1)− ψ(xk)) ≥ 0

which leads to a contradiction since ψ(xk+1) − ψ(xk) 6= 0.
Hence, π > π1,d. Observe that the first inequality holds
since εmaxi δi < 2 and each nonlinearity is monotonically
increasing (i.e., if xi(k+ 1)−xi(k) ≥ 0 then ψi(xi(k+ 1))−
ψi(xi(k)) ≥ 0 for all i) and Lipschitz with constant 1 (i.e.,
|xi(k+ 1)−xi(k)| ≥ |ψi(xi(k+ 1))−ψi(xi(k))| for all i).

APPENDIX E
PROOF OF THEOREM 4

The proof of Theorem 4 is divided as follows: in Sec-
tion E-A we prove (i) and in Section E-B we prove (ii).

A. Proof of Theorem 4(i)

It is useful to first introduce the following two lemmas.

Lemma 7 Consider the function f : [−1, 1]→ R defined as

f(y) =

∫ y

0

ψ−1(s)ds− 1

2
y2. (30)

where ψ : R → [−1, 1] is a nonlinear function satisfying the
properties (A.1)÷(A.4) and ψ−1 indicates the inverse function.
Then, f(y) > 0 for all y 6= 0 and f(0) = 0.

Proof. From (30) it follows that f(0) = 0 and f ′(y) =
ψ−1(y)−y. Since f ′(0) = 0, a sufficient condition for f(y) >
0 to hold for all y 6= 0 is that f is a convex function.

To prove that f is convex we compute the second derivative:

f ′′(y) =
1

ψ′(ψ−1(y))
− 1

{
> 1− 1 = 0, y 6= 0

= 0, y = 0

since 0 < ψ′(y) < 1 ∀ y 6= 0 and ψ′(0) = 1. It follows that f
is convex, which implies that f(y) ≥ 0 ∀ y ∈ [−1, 1].

Lemma 8 (Taylor expansion) Consider the function g :
[−1, 1] → R+ given by g(y) =

∫ y
0
ψ−1(s)ds, where ψ :

R → [−1, 1] is a nonlinear function satisfying the properties
(A.1)÷(A.4). Expanding g around y0 yields∫ y

0

ψ−1(s)ds =

∫ y0

0

ψ−1(s)ds

+ (y − y0)ψ−1(y0) +
(y − y0)2

2
g′′(z)

where z ∈ [y0, y] and g′′(z) := 1
ψ′(ψ−1(z)) ≥ 1.

Now we are ready to prove Theorem 4(i); the proof follows
the work [29].
Proof. Let ψk,i := ψi(xi(k)), i = 1, ..., n, and ψk =
[ψk,1 ... ψk,n]T . Then system (8) can be rewritten (using ψk
instead of xk as state variable) as:

ψ−1(ψk+1) = (I − ε∆)ψ−1(ψk) + επAψk. (31)

Let V : [−1, 1]n→ R+ be the Lyapunov function described by

V (ψk) = −1

2
πεψk

TAψk + ε
∑
i

δi

∫ ψk,i

0

ψ−1
i (s)ds.

Observe that from Lemma 7, V (ψk) > 0 for all ψk ∈
[−1, 1]n \ {0} and that V (0) = 0. Indeed,

V (ψk) ≥ −1

2
πεψk

TAψk + ε
∑
i

δi
2
ψk,i

2

=
ε

2
ψk

T (∆− πA)ψk =
ε

2
ψk

TLπψk ≥ 0.

Let ψ∆ = ψk+1 − ψk and ψ∆,i = ψk+1,i − ψk,i ∀ i.
Computing the increment of V along the trajectories gives

V∆ = V (ψk+1)− V (ψk)

=− πε

2

(
ψk+1

TAψk+1 − ψkTAψk
)

+ ε
∑
i

δi

(∫ ψk+1,i

0

ψ−1
i (s)ds−

∫ ψk,i

0

ψ−1
i (s)ds

)
=− 1

2
ψ∆

T (πεA)ψ∆ −
∑
i

ψ∆,i(πε
∑
j

aijψk,j)

−
∑
i

(1− εδi)
∫ ψk+1,i

ψk,i

ψ−1
i (s)ds+

∑
i

∫ ψk+1,i

ψk,i

ψ−1
i (s)ds.

(32)

From (31),∑
i

ψ∆,i(πε
∑
j

aijψk,j)

=
∑
i

ψ∆,iψ
−1
i (ψk+1,i)−

∑
i

ψ∆,i(1− εδi)ψ−1
i (ψk,i).

(33)

Lemma 8 with y = ψk+1,i and y0 = ψk,i yields∫ ψk+1,i

ψk,i

ψ−1
i (s)ds = ψ∆,iψ

−1
i (ψk,i) +

ψ∆,i
2

2
d2(zi), (34)

where d2(zi) := 1
ψ′i(ψ

−1
i (zi))

≥ 1 and zi ∈ [ψk,i, ψk+1,i].
While, with y0 = ψk+1,i and y = ψk,i, it yields∫ ψk+1,i

ψk,i

ψ−1
i (s)ds = ψ∆,iψ

−1
i (ψk+1,i)−

ψ∆,i
2

2
d2(yi) (35)

where d2(yi) := 1
ψ′i(ψ

−1
i (yi))

≥ 1 and yi ∈ [ψk,i, ψk+1,i].
Substituting (33), (34) and (35) in (32), one obtains

V∆ = −1

2
ψ∆

T (πεA)ψ∆

−
∑
i

ψ∆,iψ
−1
i (ψk+1,i) +

∑
i

(1− εδi)ψ∆,iψ
−1
i (ψk,i)

−
∑
i

(1− εδi)ψ∆,iψ
−1
i (ψk,i)−

∑
i

(1− εδi)
ψ∆,i

2

2
d2(zi)

+
∑
i

ψ∆,iψ
−1
i (ψk+1,i)−

∑
i

ψ∆,i
2

2
d2(yi)

≤ −1

2
ψ∆

T (πεA)ψ∆ −
∑
i

(2− εδi)
ψ∆,i

2

2

=
1

2
ψ∆

T
(
−2I + ε∆− πεA

)
ψ∆ =

1

2
ψ∆

T
(
−2I + εLπ

)
ψ∆.
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The inequality holds since 1 − εδi ≥ 0, d2(zi) ≥ 1, and
d2(yi) ≥ 1 for all i. Under the assumption that −2I + εLπ is
negative definite, we obtain V∆ < 0 if ψ∆ 6= 0. Therefore the
trajectories of the system (8) converge asymptotically to a fixed
equilibrium point which must be the origin (see Lemma 3).

B. Proof of Theorem 4(ii)

In this proof we follow [28, Chapter 5] and [39]. The
system (8) can be rewritten as

xk+1 = Jπxk + F (xk) (36)

where Jπ = I − εLπ and F (xk) = πεA(−xk + ψ(xk)).
The proof is divided into two steps. First, we assume that
π1 < π1,d and prove that the system (36) undergoes a pitchfork
bifurcation at π = π1. Then, we assume that π1,d < π1

and prove that the system (36) undergoes a period-doubling
bifurcation at π = π1,d.

Step 1. Assume that π1 < π1,d. At π = π1, Jπ has a
simple eigenvalue at +1 and the corresponding eigenspace
span{q} has dimension one, where q is the eigenvector of
Jπ1

associated with 1 (i.e., Jπ1
q = q) normalized such that

‖q‖2 = 1. Since Jπ1
is symmetric, the left eigenvector of Jπ1

is also q (i.e., qTJπ1 = qT ) . We can decompose any vector
x ∈ Rn as x = uq+ y where u = qTx and y = x− (qTx)q ∈
(span{q})⊥. The system of equations (36) in the coordinates
(uk, yk) can be written as follows

uk+1 = uk + qTF (ukq + yk) (37a)

yk+1 = Jπyk + F (ukq + yk)− (qTF (ukq + yk)) q. (37b)

Center manifold theory (see [28, Chapter 5.4.2]) demonstrates
that the restriction of (37) to the center manifold takes the form

uk+1 = uk + b u2
k + c u3

k +O(u4
k), (38)

where, under the assumption (A.1), the parameters b and c in
(38) simplify to

b :=
1

2
qTFyy(0, π1), c :=

1

6
qTFyyy(0, π1).

Let ∂2ψ
∂x2 (x) := diag

{
∂2ψ1

∂x2
1

(x1), ..., ∂
2ψn

∂x2
n

(xn)
}

and
∂3ψ
∂x3 (x) := diag

{
∂3ψ1

∂x3
1

(x1), ..., ∂
3ψn

∂x3
n

(xn)
}

. Then

b =
1

2
qTFyy(0, π1) =

π1ε

2
qTA

∂2ψ

∂x2
(0)

q
2
1
...
q2
n

 = 0

since ∂2ψi

∂x2
i

(0) = 0 for all i. Moreover,

c =
1

6
qTFyyy(0, π1) =

πε

6
qTA

∂3ψ

∂x3
(0)

q
3
1
...
q3
n


=
ε

6
qT∆

∂3ψ

∂x3
(0)q3 =

ε

6

n∑
i=1

δi
∂3ψi
∂x3

i

(0)q4
i < 0,

since ∂3ψi

∂x3
i

(0) < 0 for all i. Hence, (38) can be rewritten as

uk+1 = uk − |c|u3
k +O(u4

k) (39)

which means that at π = π1 the system (8) undergoes a
pitchfork bifurcation.

Step 2. Assume that π1 > π1,d. At π = π1,d, Jπ has a
simple eigenvalue at −1 and the corresponding eigenspace
span{q} has dimension one, where q is the eigenvector of
Jπ1,d

associated with −1 (i.e., Jπ1,d
q = q) normalized such

that ‖q‖2 = 1. We can decompose any vector x ∈ Rn as
x = uq+y where u = qTx and y = x−(qTx)q ∈ (span{q})⊥.

The system of equations (36) in the coordinates (uk, yk)
can be written as follows

uk+1 = −uk + qTF (ukq + yk) (40a)

yk+1 = Jπyk + F (ukq + yk)− (qTF (ukq + yk)) q. (40b)

Center manifold theory (see [28, Chapter 5.4.2]) demonstrates
that the restriction of (37) to the center manifold takes the form

uk+1 = −uk + b u2
k + c u3

k +O(u4
k), (41)

where, as in Step 1, since each ψi(·) has odd symmetry (hence
∂2ψi

∂x2
i

(0) = 0 ∀ i), the parameters b and c in (41) are given by

b = qTFyy(0, π1,d) = 0, c =
1

6
qTFyyy(0, π1,d) > 0.

Hence, (41) can be rewritten as

uk+1 = −uk + |c|u3
k +O(u4

k) (42)

which means that at π = π1,d a cycle of period 2 bifurcates
from the origin.
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