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Notation

ABBREVIATION | MEANING
PT Prospect Theory (the same notation is used to refer to Cumulative Prospect Theory)
TPB Theory of Planned Behaviour
RUM Random Utility Model
cRUM Contextualised Random Utility Model
pdf Probability density function
cdf Cumulative distribution function
log Natural logarithm
NOTATION ‘ MEANING
cRUM
A B Prospects (or options)
Va, VB Subjective (or raw) utilities of prospect A, B
Vo = |Val + |VB| L1 norm for the vector [Va, V] € R?

Contextualised utilities (bounded in [—1, 1]), representing attitude

CA=Va/Va, (8 =VB/Vn toward prospect A, B

B Choice parameter
B(Ca — (B) Intention of choosing A over B
Py (resp., Pp) Probability of choosing prospect A over prospect B (resp., B over A)
Log-normal distribution for 8, where p and ¢ > 0 are the mean and
B ~ LN|u,o] standard deviation of log(8) ~ N[, o] (where N represents the normal
distribution)
Statistical indicators
re[-1,1] Pearson’s correlation coefficient
MSE >0 Mean squared error
p-value for the t-test, i.e., for the null hypothesis that the difference
p-value > 0 between modelled and observed Pa data comes from a normal

distribution with mean equal to zero and unknown variance




1 Problem Formulation

Predicting human choices is a challenging problem with implications well beyond behavioural economics,
ranging from economics to politics, from transportation to lifestyle choices, and in its most general for-
mulation the problem can be expressed in the form of the question How do people make choices among
different alternatives?

A standard hypothesis in the literature, consistent with, e.g., expected utility theory [2, 3] or random
utility theory [4], is that a decision-maker (in this manuscript we will use the terms “decision-maker” and
“subject” interchangeably) chooses the alternative among two prospects that maximises his/her utility,
usually expressed in monetary units. It is then natural to assume that this decision-making process
considers two types of variables:

e FErogenous variables, which are observable, for instance attributes on the alternatives which can be
expressed in terms of outcomes and associated probabilities;

e [ndogenous variables, which are not observable and vary among decision-makers.

A framework used to model discrete choices under assumption of utility-maximising behaviour is given by
the Random Utility Model (RUM), described in the next section.

1.1 Random Utility Model (RUM)

The RUM is a cornerstone of behavioural economics for decisions on alternatives with uncertain outcomes,
whose aim is to quantify choices by decision-makers among discrete alternatives [4, 5, 6, 7, 8|. The key
assumption of RUM is that decision-maker’s preferences can be described by a utility function where
she /he chooses the alternative with highest perceived value, i.e., highest utility. The utility depends on
exogenous (observable) attributes and endogenous (unobservable, subjective) attributes which randomise
the actual choice, hence RUM computes the probability of choosing a given alternative.

Assume that a decision-maker needs to make a choice between N alternatives, where in this work we
consider N = 2 and denote the alternatives by A and B. The utility (or subjective valuation) assigned to
each alternative is denoted by Vj and Vg, respectively, and depends both on observable and unobservable
attributes, denoted by X and X*, respectively, so that V4 = f(X, X™*). By representing X* as a random
variable, while we are not able to model choices with certainty, we can compute a probability of the
decision-maker choosing a given alternative. The way we model this probability is through a Sigmoid or
Logit function (Def. 1).

Definition 1 (RUM). Let Vo and Vi be the utilities associated with the discrete alternatives A and B,
respectively. Then, the probability of choice (A or B) is given by:

Py=(1+exp(—B(Va—8)) ", Pe=1+exp(—B(Ve—Va))) ' =1— Py, (1)

where B is a weight or calibration parameter.

1.2 The weight parameter in RUM

The weight parameter § is typically calibrated for the set of data at hand. Briefly, one can for instance
consider the following cases:

1. Deterministic case: A constant [ is associated to a decision-maker. Given a dataset of observed binary
choices made by a decision-maker for specific outcomes (A, B), 5 can be estimated using Maximum
Likelihood Estimation, by modelling the response variable using a logistic regression model.

2. Stochastic case: A mixing distribution of 3 is associated with a population of decision-makers. Given a
dataset of observed binary choices made by each decision-maker in a population for specific outcomes
(A, B), a mixing distribution of 3, specifying the distribution of the weight parameter over people, can
be estimated using a mixed logit model [9].



We argue that the current treatment of 8 in the literature lacks coherency, which limits the predictive
power of RUM. In particular, there does not seem to be consensus in the notation for the parameter (;
it is referred to in the literature in different ways, such as a “sensitivity parameter” [10], “steepness of
S-shaped function” [11], “free sensitivity parameter” [12], “precision parameter” [13], “inverse rationality
parameter” [14], “strength of preference parameter” [15]. Furthermore, this diverse nomenclature indicates
that 8 is understood as an endogenous parameter, even if in the common RUM formulation § is explicitly
dependent on exogenous variables, i.e., the magnitude and units of the utilities Vi, V3.

To summarise: The range of values for 8 cannot be transferred from one experiment to another (i.e.,
there is no obvious value of 5 to use for predicting choices across experimental settings), and the expression
for (binary) choice probability P4 is limited by the context-dependent parameter 3. Hence, we argue that
separation of exogenous and endogenous variables is imperative, not only for improving predictability of
economic choices, but also for their interpretability. To resolve this problem we propose a new method for
computing the choice probability, called contextualised RUM (cRUM).

1.3 Contributions and outline

Our main contributions can be briefly stated as follows:

1. We propose cRUM, a model for choice probability with endogenous choice parameter j3;

2. We validate cRUM and demonstrate the endogenous property of 8 in two consecutive steps, each one
using independent data on discrete choice experiments.

The Supplementary Information is organised as follows. First, we introduce cRUM (Supplementary
Section 2.1) and discuss how to derive a stochastic model for 5 to capture variability of choices in a
population of decision-makers (Supplementary Section 2.2). Afterwards, we present how to compute
subjective utilities in cRUM (Supplementary Section 2.3) and introduce the notion of framing effect (Sup-
plementary Section 2.4). Finally, we introduce the datasets on discrete choice experiments used to test
cRUM (Supplementary Sections 3.1 and 3.2): we use experimental studies on the framing effect to test
the inferred population-distribution for the parameter 5 (Supplementary Section 3.3), and we test its
population-representative value across several datasets containing prospect choice experiments with dif-
ferent experimental settings (Supplementary Section 3.4).

2 Contextualisation by means of normalisation: From RUM to cRUM

2.1 Contextualised Random Utility Model (cRUM)

In spite of its wide use, the common expression in eq. (1) of the Logistic model for binary choices Py is
fundamentally limited by the context-dependent parameter 3. There is no obvious value of 8 from the
literature that can be utilised for predicting choices across experimental settings, where nominal values
significantly vary. This section provides a computational viewpoint of cRUM, a new method for computing
the choice probability. The definition is proposed in egs. (1)-(2) in the main text, and is reported in what
follows for completeness. Supplementary Fig. 1 provides an illustration.

Definition 2 (cRUM). Let Vo and Vi be the utilities associated with the discrete alternatives A and
B, respectively. The attitudes of a decision-maker toward prospect A and prospect B are given by the
normalised utilities

¢ Va i ¢ VB
A= @d (B= oo
[Val + Vs8] Vel + VB
respectively. The intention of a decision-maker to choosing prospect A over prospect B is given by
Va — Vg
A—GB)=P 7 2



attitude toward A, B:

valuation of Ca=Va/Va, G =Va/Va intention of probability of
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Supplementary Fig. 1: Illustration of cRUM, a framework for predictive modelling of choice between prospects A
and B (Def. 2). Contextualisation of valuations is ensured by normalisation using the L1 norm V,, = |[Va| + |V5].

where B is a dimensionless scalar referred to as the choice parameter. The contextualised probability by
a decision-maker of choosing prospect A over prospect B is given by

_ —1
Pa = (1+ exp((—B(Ca — o))" = (1 T exp (—BM)) , 3)

and of choosing prospect B over prospect A is given by Pg =1 — Pa.

Eq. (3) proposes to incorporate contextualisation in valuation of prospects into a Logit type choice
function. The novelty of eq. (3) lies in the normalisation (implemented by means of L1 norm), as a
method to draw comparisons between the intentions towards the two alternative prospects, A and B.

Inverting eq. (3), one can obtain the following expression for § as a function of observed choice prob-

ability Py and contextualised utilities (s, (g':

. (@

{0, if Py = % (or, equivalently, (o — (g = 0)

P .
CAECB log (1_?3A> >0, otherwise.

In this new context, and in line with TPB theory [16], we name [ as the choice (or control) parameter,
which can be interpreted as quantifying control, i.e., how sure a decision-maker is when making a choice:
1

B > 0, where 8 — 0 implies Py = 5 and 8 — +o0 implies Py = 1.

2.2 The choice parameter in cRUM
2.2.1 Connection to perceived probability of unlikely events

According to Def. 2, the choice parameter 5 does not explicitly depend on the prospect utilities as in
the classical formulation, and thus can be considered endogenous. Intuitively, this implies that suitable
psychological and/or neurological evidence should be sufficient to infer a distribution for 8. To this end,
we propose to interpret the choice parameter in terms of lowest perceived probability of unlikely events
(i.e., perception that an event, e.g., choosing A, is unlikely); this intuition comes directly from Def. 2, as
we explain in the following.

From eq. (2) it follows that the intention of choosing prospect A over prospect B is bounded in the
interval [—f3, 8]. Indeed, a sure choice of prospect A, defined as choice associated with sure probabilities
Py = 1,Pg = 0, is represented by (4 = 1,(g = 0, yielding B({a — (B) = [; similarly, a sure choice
of prospect B, defined as choice associated with sure probabilities Py = 0,Pg = 1, is represented by
A =0,(p =1, yielding 5(Ca — () = — . Theoretically, using eq. (3) the interval [—/3, 3] for the intention
is associated with the interval [0, 1] for the probability of choosing prospect A over B. However, in practice,

Note that when Py = %, we assume (A — (g = 0, and we define 8 = 0. This case represents a situation where the choice
between prospects is ambiguous, which we treat as a purely random choice: the utility of prospect A (Ca) is equal to the
utility of prospect B ((B).



the definition of zero probability depends on what humans perceive as near-zero probability, or probability
of unlikely event.

2.2.2 Derivation of a stochastic model for the choice parameter in cRUM

Variability in a population can be captured by assuming a stochastic model for § with pdf defined on
(0, +00). In this work we assume that § follows a log-normal distribution, i.e., 5 ~ LN |[u, o] where p and
o > 0, or, equivalently, 3 = exp(u + 0Z) where Z ~ N0,1]. We use the average of the distribution,
denoted by E[f], to serve as a population-representative value for the choice parameter g, fixed across
decision-makers.

According to the interpretation provided in Supplementary Section 2.2.1, we use human-social probab-
ility perception evidence available in the literature to infer a log-normal distribution for 5. We consider
two constraints: first, we refer to perceptual numerosity experiments to estimate E[S]; then, we refer to
human perception of societal risks to identify a plausible range for 8 that accounts for a sufficiently high
level of certainty.

Derivation of a population-representative value Psychological studies of probability perception
[17, 18] suggest 1/1000 as perceptual frequency resolution for a group of decision-makers, from which we
derive an average (or population-representative) value for the lowest detectable probability. Using this
criterion in eq. (4), with (o — (g = —1 and Py = 1/1000, yields the following definition.

Definition 3. The population-representative value of the choice parameter [ corresponding to lowest
perceived probability of unlikely event (defined as perception of near-zero probability) of 1/1000 is given

by:
1—0.001

B[] = log < 0.001

) = log(999) ~ 7, (5)

Observe that from eq. (3), E[S] is equal to the log of odds of prospect B over A, that is, as the chances of
B (likely event) happening divided by the chances of A (likely event) happening: E[5] = log (oddspysa) =
log (1/0ddsa vsB)-

Derivation of a log-normal distribution Studies on human perception of societal risks (see main
manuscript), identify 1/1000000 as a generally accepted frequency threshold for (in)tolerable risk, both
from the individual and societal risk perspectives.

The constraints we impose to derive the estimates of ;1 and o are then given as:
e On average the population has lowest perceived probability of unlikely events equal to 1/1000 (eq. (5));
e 95% of the population has lowest perceived probability of unlikely events > 1/1000000 = 10~°.
Given that (o — (g = —1 and, consequently, that the lowest perceived probability of unlikely events
(considered as the perception of near-zero probability) is given by Py = (1 +¢e®)~!, the second constraint
implies that

1-107°
0.95=P[Py>107%] = P [(1 +ef) 1> 10—6} =P [10_6 > eﬁ]

1—106

, 1-1076
=P {5 < log <1O—6>] = P[B < Bosy] with Bosy = log (10_6> :

All in all, the two constraints imposed in the stochastic model can be formally rewritten as
E[f] = exp <u + %2) =1, where E[f] = 7 is deduced in eq. (5)

6
P[B < Bosy] = 3 (1 + erf(%)) :=0.95, where fos59 = log (115926) ©

Solving the system of equations (6) yields p = 1.8, o = 0.5, and consequently we define the log-normal
distribution for g as follows.
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Supplementary Fig. 2: Log-normal distribution of 8, 8 ~ LN[1.8,0.5] (eq. (7)). Legend: The 68% and 95%
confidence intervals are highlighted with darker blue areas. A dashed red line indicates the arithmetic mean of the
distribution E[f] =7 (eq. (5)), corresponding to the population-representative value for the choice parameter £.

Definition 4. The population-distribution of the choice parameter 5 corresponding to lowest perceived
probability of unlikely events of 1/1000 on average, with perception of 95% of the population being >
1000000, s given by:

B ~ LNJ[1.8,0.5]. (7)

Supplementary Figure 2 illustrates the distribution and highlights the 68% and 95% confidence intervals.

2.3 Computation of valuation by means of Prospect Theory

In Def. 2 it is assumed that valuations of prospects are known for choice problems; therefore, a necessary
step is to first compute the valuations of prospects from the collected data. In this section we briefly
explain how to compute utilities using Prospect Theory (PT)? in a setting where a decision-maker needs
to make a choice between two alternative prospects A and B (the reader is referred to [19] for details).
Let prospects A and B be written as:

A {(YA177TA)7 (YA27 1- 7TA)} B: {(YBl77TB)7 (YBzv 1- TrB)}

where Y4, and Yy, are outcomes for prospect A with probabilities 4 and 1—ma, respectively, and similarly
for prospect B. A decision-maker chooses a prospect based on the perceived values of alternatives A and
B, namely, Vi and V. According to PT, the utilities VA and Vg are computed by:

_ U(Y1)w(m) +U(Yz) (1 —w(w)) for gain or loss prospects (8a)
UYr)w(m) +U(Y2)w(l —7)  for mixed prospects
DV L S S
v) = {—/\(Yo —Y) WY <Y (85)
w(r) = il (8¢)

(777 +(1- 71')7)1/’y

where Yj is a reference value and V', Y7, Ys, and 7 pertain to A or B. Gain (or, positive) prospects are
defined as Y7 > Y5 > Yy > 0, loss (or, negative) prospects as Y1 < Yy < Y < 0, while mixed prospects
as Y1 < Yy < Ya. The function U(Y') is called the utility function, while w(7) the weighting function:
we choose the functionals proposed in the classical work by Kahneman and Tversky [19], but there are
several studies addressing the specific functional forms of U(x) of eq. (8b) and w(w) of eq. (8c), see, e.g.,

2In this work we use PT to refer to Cumulative Prospect Theory [19].



[20]. Note also that the general formulation of U(Y") includes two different parameters for gain and loss
prospects, i.e., 67 and §~, respectively. If not explicitly written, in this manuscript it is assumed that
dt=456=4.

Selection of the positive PT parameters (), d,y) quantifies different risk and valuation biases. Specific-
ally, (A, 0,7) = (1,1,1) implies a simple expected value without any biases, (A, d,7) = (> 1, < 1,1) implies
an expected utility model without accounting for the risk bias, whereas (\,d,v) = (> 1, < 1, < 1) includes
both value and risk biases. In the literature on PT, the parameters in egs. (8b)-(8¢c) are inferred from
experiments; in a number of studies, only ¢ and v are considered, with A = 1 [20, 21, 15]. In this work,
we denote by standard PT parameters the values (7,4, \) = (0.65,0.88,2.25) (note: 67 = §~ = §), from
the calibration proposed in the classical work by Kahneman and Tversky [19]3.

2.4 The Framing Effect

The framing effect describes the difference in behaviour caused by “variations in the framing of acts,
contingencies, and outcomes” [22], and it is now subject of many experimental studies, e.g., |23, 24, 25, 1,
26, 27| and references therein. The definition we adopt in this work is the following.

Definition 5 (Framing effect). Consider an experimental setting where decision-makers need to choose
between a risky and a sure prospect, denoted by prospect A and prospect B, respectively. The framing effect
of each decision-maker i is defined as the difference in the percentage of trials in which the risky prospect was
chosen by i between the loss frame and the gain frame. It is denoted by: framing effect(i). The average
framing effect across a population of decision-makers is defined as the mean: %Z?:l framing effect(i),
where n s the total no. of decision-makers.

In the following we formulate the valuation of prospects illustrated in Supplementary Section 2.3 in the
gain and loss frames, to ease the computation of the framing effect. We define the prospects in a gain and
loss frame as follows, where Y > 0 and 7 € [0, 1]:

{gain frame A :{(Y,7),(0,1—m)} B: {(Yr,1),(0,0)}, ©

loss frame A :{(-Y,1—-n),(0,1—7m)} B:{(-Y(1—n),1),(0,0)}.

Note that the sure prospect is created to match the expected value of the gamble, depending on framing.
Using PT to compute the valuations Vi and Vg for prospects A and B in both frames (eq. (8) with
§~ = 6T =), calculations held:

VAG = Yéw(ﬂ)v VBG = Yéﬂ-é? |VAG‘ + ’VBG| =Y’ (7[-6 + w(ﬂ')) , and
Va, = - AYow(l—7), Vi, =-AY°(1—n)°, |Va,|+ |V, |=AY° <w(l — )+ (1 - 7r)5) :

where Va, and Vg, and V}, and Vg indicate the valuations for prospects A and B in the gain (G), and
loss (L) frame. Using L1 normalisation, we obtain that the normalised utilities are given by:

_ w(m) B 0 _w(m) — w0
e = )+ Bo = ) 4 R R
w(l —m) (1—m)° w(l—7)—(1-n)°

Car = Cw(l T+ (1-7)) By = Cw(l T+ (-7 s =GBy = Cw(l—m)+ (1 —7)%

Therefore, the probabilities of choosing the risky prospect A in the gain (Pa,) and loss (Pa, ) frames are

given by:
1 1
PAG: w _ 4 i PAL: w(l— _(1_-+\6 : (10)
L exp (AT 1 exp (BEH=EHET)

3The work [19] identifies two different values for =, i.e., ¥ = 0.61 for loss prospects and v = 0.69 for gain prospects. For
simplicity and to keep a low no. of parameters, we consider v = 0.65, i.e., the average value, as the standard PT parameter.
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Supplementary Fig. 3: Values of 7 that satisfy the conditions Py, = 0.5 (left panel), Py, = 0.5 (right panel), and
P, = 0.5 or Py, = 0.5 (bottom panel) as a function of v and 6. The values v = 0.65 and § = 0.88 correspond to
the standard PT parameters. In particular, the bottom panel highlights the values of m such that Pa, < 0.5 < Pa,,
(grey dash-dotted line), illustrating a positive framing effect (Supplementary Section 2.4 and Remark 1 for details).

Supplementary Figure 3 illustrates the values of m s.t. Pag % 0.5 and/or Pa, % 0.5, as a function of
the PT parameters v and d; note that, given v, 0, for all m s.t. Ps, > 0.5 > Pa, the framing effect is

positive. In particular, when v = 0.65 and § = 0.88 (i.e., values associated with standard PT parameters),
we obtain that:

<05, 7>0.245 <05, w>0.755
Pas{=05 m=0245, Pa, {=05 m=0.755
> 0.5, 7<0.245 > 0.5, < 0.755,

This implies that, according to PT, Py, > 0.5 > Pa,, for all values of = € (0.245,0.755) and standard PT
parameters, meaning that choosing the risky prospect A is more likely in the loss than in the gain frame.
From the analysis above, we can draw the following observations.

Remark 1. Let the prospects A and B be given as in eq. (9), and assume that PT (eq. (8)) is used to
compute valuations Va, Vg with PT parameters (7,0, A). The following statements hold:

(1) The probabilities of choosing the risky prospect A in the gain (Pa.) and loss (Py, ) frames do not
depend on the amount Y and are given by eq. (10);

(ii) According to PT (with standard PT parameters) the framing effect is positive for all m € (0.245,0.755),
ie., P, — Pag > 0 for all 7 € (0.245,0.755).

3 Application: Experimental results on discrete choices datasets

3.1 Data description
To test cRUM and demonstrate the endogenous property of 5 we use datasets on discrete choice experi-
ments (details in Table 1). We consider two types of datasets:

1. Discrete choice experiments evaluating the framing effect across decision-makers: see DS-FR1 and
DS-FR2 of Table 1 in the main manuscript. The information collected includes:



e Two sets of problems/trials and, for each problem, the description of each alternative structured as
economic prospects (i.e., outcomes associated with probabilities of winning/losing). The problems
across the two sets are the same, but in the first set they are posed in a gain frame, while in the
second set they are posed in a loss frame;

e The response of each decision-maker for each trial.

Results are presented in Supplementary Section 3.3.

2. Discrete choice experiments across a population of decision-makers: see DS1-DS12m of Table 1 in the
main manuscript. The information collected includes:

e A set of problems/trials and, for each problem, the description of each alternative structured as
economic prospects (i.e., outcomes associated with probabilities of winning/losing);

e The choice probability, defined as the percentage of trials in which each alternative was chosen). Ob-
serve that this is an aggregated information for each trial across decision-makers (the single responses
for each trial and decision-maker are unknown).

Results are presented in Supplementary Section 3.4.

The software used for the numerical simulations is MATLAB®); for reproducibility, we specify the seed
for the MATLAB®random number generator as rng(’default’).

3.2 Data extraction from the datasets of Table 1

In this section we detail the data extraction from the datasets of Table 1 in the main manuscript, consid-
ering first in Section 3.2.1 the datasets DS-FR1 and DS-FR2, on discrete choice experiments evaluating
the framing effect across decision-makers, and then in Section 3.2.2 the datasets DS1-DS12m, on discrete

choice experiments across a population of decision-makers.

3.2.1 Discrete choice experiments evaluating the framing effect across decision-makers

DS-FR1, De Martino et al. [24] The Methods section of the main manuscript already gives a
brief introduction on the data from De Martino et al. We report the information in this paragraph for
completeness. The work of De Martino et al. presents experimental data that combine framing and
heterogeneity effects, obtained by studying variation between 20 subjects. The prospects presented to the
subjects during the experiments, namely, a risky prospect, A, and a sure prospect, B, are defined according
to eq. (9), from the following (16 possible) combinations of outcomes Y and probabilities 7:

Gain frame. Aqg: {(Y;, 7;),(0,1—m;)} Bg:{(Yim;,1),(0,0)}
Loss frame. Ay, : {(=Y;,1—m;),(0,7;)} By : {(Yi(m; —1),1),(0,0)}
where Y; = (£25, £50, £75, £100) and 7; = (0.2, 0.4, 0.6, 0.8), for all 4,5 =1,2,3,4.
Note that by computing utilities V4 and Vg according to PT (standard PT parameters, Supplementary

Section 2.4), out of the 16 combinations, calculations show that there are only 4 distinct pairs for the
normalised utilities Ca, (B:

w(m) =m0 wl—7) = (1—7)°
(CAG—CBG,CAL—(BL):< (m5) — (1-m)—-(Q ]))

w(m) + 5wl —m) + (1)
|} with standard PT parameters § = 0.88, v = 0.65
= {(0.0345, 0.1243), (—0.0775, 0.1237), (—0.1237, 0.0775), (—0.1243, —0.0345)}.

As expected, PT yields (a; — (B, > Caq — (Ba-
The framing effect, i.e., the percentage difference in choice probability Pa in the loss vs gain frames is
reported in [24] for each of the 20 subjects; in ascending order it writes {0.061,0.073, 0.083, 0.085, 0.085,
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0.104, 0.104, 0.104, 0.145, 0.167, 0.176, 0.197, 0.219, 0.228, 0.25,0.28, 0.312, 0.312, 0.375, 0.384}. The
lowest value is interpreted by De Martino et al. as the most rational decision-maker and the highest value
as the least rational decision-maker.

DS-FR2, Diederich et al. [1] In the second experiment described in [1] participants had to choose
between a gamble, A, and a sure prospect, B, with the sure prospect presented in either a gain or a loss
frame, similarly to the study by De Martino et al. [24]. Four initial amounts, flanked by plus/minus
one point amounts, and four probabilities of winning the gamble were selected. The initial amounts and
probabilities of winning the gamble were paired together to form 48 unique gambles, with L and G denoting
loss and gain frames, respectively:

Y; = (19€,20€,21€,39€,40€,41€,59€,60€,61€,79€,80€,81€),
m; = (0.3,0.4,0.6,0.7), i,5=1,2,3,4

{AG A, m), (0,1 —m;)},  Bg:{(Yin;,1),(0,0)} (gain frame)
Ay {(-Y;,1 —7;),(0,7;)}, Bp:{(=Yi(1l—m;),1),(0,0)} (loss frame)

In the experiment, the authors tested the influence of different experimental conditions, i.e., 2 frames
(gain, loss), 2 time limits (1s, 3s), 3 needs (0, 2500, 3500), on the framing effect.

In this work, we group these experimental conditions in 7 case studies denoted DS-FR2.# (Supplement-
ary Table 1). The number of participants considered in [1] is 54, but in our work we exclude data from
one participant due to a high number of undefined responses, marked 9999 or nan in the cvs file: indeed,
the percentage of undefined responses of participant with ID 38 is around 40%, compared to a percentage
smaller than 0.08% for all other 53 participants. Thus, we consider 53 participants.

Note again that by computing utilities Vo and Vg according to PT (with standard PT parameters,
Supplementary Section 2.4), out of the 48 combinations there are only 4 distinct pairs for the normalised
utilities Ca, (B:

w(m) =70 w(l —m;) — (1 —m;)° N
w(my) + 78wl —m) + (1 _Wj)5> j=1,....4

|} with standard PT parameters § = 0.88, v = 0.65
= {(0.0334, 0.1301), (—0.0775, 0.1237), (—0.1237, 0.0775), (—0.1301, —0.0334)}

(CAG - CB(;vCAL - CBL) = (

As expected, PT yields (a; — (B, > Caq — (Ba-

According to the analysis presented in Supplementary Section 2.4, we expect Py, > 0.5 > Py, for
all mj, j = 1,2,3,4, since 7; € [0.3,0.7] C (0.245,0.755) for all j = 1,2,3,4. That is, observation of a
positive framing effect (for each subject) is consistent with PT (Remark 1). However, from the results
of the experimental study conducted by Diederich et al. there are subjects who exhibits a nonpositive
framing effect (last two rows of Supplementary Table 1 and Supplementary Fig. 4(a)(top panels)), which
is not consistent with PT. We expect these case studies to be more complex to explain/predict by the

approach we introduce in our work.

3.2.2 Discrete choice experiments across a population of decision-makers

The data collected in DS1-DS12m were retrieved either directly from the respective publications or from
publicly available datasets posted online by the corresponding authors. For reproducibility reasons, we
detail in what follows the retrieval of data from specific (and more complex) datasets, namely, DS5, DS9,
and DS12-DS12m of Table 1.

DS5, Lopes and Oden [21] All input data used in our study that define prospects are contained in
Figure 1 of [21], referred in their work as “standard stimuli”. The figure illustrates six groups of outcomes,

which in our computations are numbered as 1=riskless, 2=rectangular, 3=peaked, 4=bimodal, 5=short
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DS-FR2.1 |DS-FR2.2|DS-FR2.3|DS-FR2.4|DS-FR2.5|DS-FR2.6| DS-FR2.7
Session all 1 2 3 1 2 3
Time Limit 1s, 3s 1s 1s 1s 3s 3s 3s
Need Levels 0, 2500, 3000 0 2500 3000 0 2500 3000
Frame (1 gain, 0 loss) 1/0 1/0 1/0 1/0 1/0 1/0 1/0
75 g G 2 52.3% 471% | 51.8% | 51.6% | 52.7% | 53.9% | 56.6%
chosen in gain frame
Avg % of trials A is 70.9% 728% | 70.8% | 73.9% | 715% | 67.5% | 69.2%
chosen in loss frame
Avg Framing effect 18.6% 25.7% 19.0% 22.3% 18.8% 13.7% 12.6%
No. of subjects with
framing effect< 0 3 (5.7%) 1(1.9%) | 4 (7.5%) |6 (11.3%) | 5 (9.4%) |8 (15.1%) |10 (18.9%)
No. of subjects with
T 0 (0.0%) 3(5.7%) | 1(1.9%) | 0 (0.0%) | 2 (3.8%) | 4 (7.5%) | 2 (3.8%)

Supplementary Table 1: Description of the experimental study conducted in Diederich et al. [1]. The
experiment consisted of three sessions. Within each session, two different response time limits were in-
cluded: the first and third blocks with 1s, and the second and fourth blocks with 3s. Across the sessions,
three different levels of induced need, defined as the minimum points to be obtained during one block of
trials, were applied with levels 0, 2500, and 3500 points. Given the percentage of trials that prospect A is
chosen by each decision-maker (here we report the average across all decision-makers) in the gain and loss
frames, the average framing effect is calculated according to Def. 5. Lastly, we report the no. of subjects
that do not exhibit a behaviour consistent with PT.

shot, and 6=long shot, and whose probability is indicated by tally marks. Prospects A and B can be
computed as a combination of these outcomes, obtaining in total 36 problems. Since 6 are trivial cases,
where A = B and Py = Pg = 1/2, there are 36 — 6 = 30 cases A # B for which Py is predicted: these
cases are, e.g., (A =1, B =2), (A =1,B=3),...(A=6,B=1),...(A =6, B =5). The experimental results
are given in Table 2 in [21] under “standard lotteries” as probabilities of choice by 80 subjects, where A
prospects are rows and B prospects are columns. Note the antidiagonal values of probability of choice
equal to 0.5 for the cases where prospects are identical (A=B).

The data set DS5 consists of 36 gain cases (as defined in Figure 1 of [21] with positive monetary values)

and 36 loss cases (as defined in Figure 1 of [21] but with negative monetary values), for a total of 72 data
points (which include 6 +6 = 12 trivial cases for which Py, = Pg = 0.5). The computation of utility values
for the gain and loss cases with multiple outcomes is based on egs. (1)-(2) in [19].
DS9, Erev et al. [28] Prospects used in the experiments captured by the datasets DS9 and DS12-
DS12m are generated by the same algorithm, following a process explained in [28]. For this study, we
extract only the baseline cases, which we describe in this and the next paragraph. The data presented by
the authors in the tables in Appendices B,D,G, and I, where obtained for 180 problems of which 30 were
repeated. From the 180 problems we select those for which: Lottery Num = 1: maximum two outcomes in
each prospect; Corr = 0: no correlation; Amb = 0: no ambiguity in prospect formulation. The observed
choice probability Pp in the column w/o feedback (i.e., single choice) was used.

DS12 and DS12m, Peterson et al. [29]
(see github.com/jepeterson/choices13k for a description of the data given by the authors Peterson et al.).

The data is extracted from the file c13k_selections.csv

The data is structured as a table T'(i,j) where the row index ¢ = 1,...,13009 represents a choice
problem (with 13009 being the total number of problems considered), and the column j = 1,...,16
indicates a variable in {Problem, Feedback, n, Block, Ha, pHa, La, Hb, pHb, Lb, LotShapeB, LotNumB,
Amb, Corr, bRate, bRate std}. We extract cases with the following criteria:

e T(i,2) = Feedback = “False” or T'(i,4) = Block = 1: No feedback is given to subjects about the reward
they received and missed out on after making their selection (only 2380,/13009 problems satisfy this
condition);
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e T(i,12) = LotNumB = 1: There are only two outcomes in the gamble prospect B;

e T(i,13) = Amb = "False": There is no ambiguity in the problem formulation, i.e., the decision-maker
received complete information and was able to see the probabilities of the outcomes (see [29] for a
detailed definition);

e T'(i,14) = Corr = 0: There is no correlation between the payoffs of the two gambles.

The problem IDs for the selected cases are given in the online repository. Note that there are 13009
problem IDs but 14568 rows, i.e., some problems are repeated with and w/o feedback. Our selection of a
given problem ID is always the one w/o feedback. Examples of relatively difficult prospects to comprehend
and evaluate are summarised in the Supplementary Information of [29].

3.3 First test of cRUM: variability across decision-makers and framing effect

In this section we describe the results obtained on the datasets DS-FR1 (De Martino et al. [24]) and
DS-FR2 (Diederich et al. [1]) of Table 1 in the main manuscript.

DS-FR1 (De Martino et al. [24]) For a thorough discussion on the results for the dataset DS-FR1
we refer the reader to the main manuscript. Briefly, Figure 2 in the main manuscript illustrates how the
stochastic model g ~ LN]1.8,0.5] reproduces the observed variability in framing effect (Def. 5), evaluated
in terms of Pearson correlation coefficient r (left panel of Fig. 3(a)). Variability w.r.t. PT parameters
(7,9, A) is highlighted in the right panel of Fig. 3(a). Finally, dependency on percentage of total amount
offered in sure prospect (i.e., 7 in the notation of eq. (9)) and on initial amount (i.e., £Y in the notation
of eq. (9)) is shown in the left and right panels of Fig. 3(b), respectively.

DS-FR2 (Diederich et al. [1]) For completeness, we decided to test our model for 5 on a bigger
dataset (DS-FR2), both in terms of number of subjects, 53, and set of problems (Supplementary Table 1).
The unique problems/trials are described in Supplementary Section 3.2.1. Again, the stochastic model
B ~ LNJ1.8,0.5] reproduces the observed variability in framing effect well, considering that no calibration
is involved.

In addition, we decided to estimate (read also: calibrate) the distribution of § using the following
methods (M;—Ms), which estimate parameters of a log-normal distribution of 5 across individuals. Di-
verse methods were considered since, to our knowledge, there is no standard method to calibrate weight
parameters on framing effect data. In the following, we denote by vy € {0,1} (0 = choose B, 1 = choose
A) the observed responses for each decision-maker k =1,...,53 and problem/trial ¢.

(My) Input: Responses yi; € {0,1} for each decision-maker k and trial ¢.
Output: Estimated distribution 3 ~ LN[f, 6] with mean E[B] = exp (/l + %2>

Method: (Grid search) A 50 x 50 grid of values (u;,0;), where pu; € [0.1,3] and o; € [0.1,1.5]

(i,j = 1,...,50) are linearly spaced with no. of points equal to 50 (s.t. the spacing between the
points is m"Tmin, with [min, max| indicating lower/upper bounds of y; or o), is created to fit
the distribution LN [u, o] on the observed framing effect. The estimated distribution § ~ LN{[ji, 6]

minimises the MSE between observed and estimated framing effect across all decision-makers k:

53
(f1,6) = argmin — Z (framing effect(k) — estimated framing effect(k) at (u;, aj))Q.
(ki,o5) k=1

i,j=1,..,50

(M) Input: Responses yi; € {0,1} for each decision-maker k and trial ¢.
Output: Estimated distribution 3 ~ LN{[ji, 6] with mean E[3] = exp <ﬂ + %2)
Method: (Mized logit) We follow the work of Revelt and Train [30], who perform mixed logit
estimation to evaluate how the parameter § varies over people by maximum simulated likelihood.
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As exact maximum likelihood estimation is not possible, the probability of observing a sequence
of choices for each subject is approximated by a summation over randomly chosen values of S,
drawn from a LN |[u, o] distribution for given values of the parameters p, 0. We consider a total
no. of draws Npraws = 1000. The estimated distribution B ~ LN, ] across subjects is the
one that maximises the simulated log-likelihood ¢:

(i1,6) =argmax ((B(p,0))

(o)
53 Npraws
where  £(5(u,0)) =) log ( > TIpeBrr)ee(1 - pt(ﬁk,r))l_yk’t)
k=1 r=1 t
with /Bk,r ~ LN[,Ufk,rv Uk,r]
1

Dbt (Bk:,r)

1 exp(—Brr(Car — (By))

Pt(Bk,r) is the probability that decision-maker k chooses A at trial ¢; the probability of observing
the choices y ¢ in all trials ¢ is captured by [T, pe(Ber)¥et (1 — pe(Brr)) Yk

In each method (M; and My) we partition the data in DS-FR2.#, where DS-FR2.# refers to one of the
7 case studies DS-FR2.1-DS-FR2.7, in training and test data (50%-50% partition). Results are shown in
Supplementary Fig. 4.

e Training data is used to find the optimal parameters (ji, ) using a 2-fold cross validation procedure:

— Given N7 the total no. of datapoints in training data, we compute a random partition (Dy, Ds) for
2-fold cross-validation. The partition randomly divides the training data into 2 disjoint folds, each of
which has approximately the same number of data points.

— We train on D4 and test on Do; in the test phase we compute MSE between observed and estimated
framing effect across all decision-makers using Ds. We repeat the procedure, training on Dy and
testing on D;j.

— We compare the two values of MSE obtained in the test phase on D; and on Dy. We choose the
parameters i, &, hence stochastic model 8 ~ LN|f, 6], that yield lowest MSE.

e Test data is used to evaluate the predictive power of the calibrated stochastic model § ~ LN[fi, 6] and
of the proposed (not calibrated) stochastic model 8 ~ LN[1.8,0.5] (eq. (7)), by computing goodness of
fit. Goodness of fit is given in terms of correlation and MSE between observed and estimated framing

effect across all decision-makers.

3.4 Second test of cRUM: across decision-makers and datasets

In this section we describe the results obtained on the datasets DS1 to DS12m and aggregated datagroups
DGs, DGgl, DGm of Table 1 in the main manuscript. Although we refer the reader to the main manuscript
for a thorough discussion on the results, in the following sections we describe the statistical indicators re-
porting goodness of fit (Supplementary Section 3.4.1) and the performed linear regression analysis between
observed and simulated probability of risky choice Py (Supplementary Section 3.4.2).

3.4.1 Evaluation of results and model fit

To check if cRUM is valid for the collected data (DS1 to DS12m), we computed three different statistical
measures, namely, Pearson’s correlation coefficient (r), mean squared error (MSE), and p-value for the
t-test (i.e., for the null hypothesis that the difference between modelled and observed data comes from
a normal distribution with mean equal to zero and unknown variance). The fit was computed between
the observed values reported in the cited references in Table 1 of the main manuscript and the estimated
values using cRUM (eq. (3)) of choice probability Pa for prospect A. The higher the value for r (which
ranges between —1 and 1) and the value for p-value (which ranges between 0 and 1), and the smaller
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Supplementary Fig. 4: (a): Testing cRUM on the dataset DS-FR2 and its case studies DS-FR2.# (Supplementary
Table 1 for details). The top panels show the observed probabilities of risky choice in loss (P, ) and gain (Pa)
frames for each decision-maker; according to Remark 1, the data are consistent with PT if Py, > 0.5 > Py, (area
above dashed black line). The bottom panels illustrate observed vs estimated framing effect using cRUM with
B ~ LNJ[1.8,0.5] (eq. (7)), and associated values of correlation r and MSE. (b): Comparing hypothesised (eq. (7))
vs calibrated distributions of the choice parameter 8 for DS-FR2.2, which is the case study corresponding to lowest
no. of decision-makers exhibiting a nonpositive framing effect (Supplementary Table 1). The left panel shows
observed and estimated framing effect using test data. The right panel shows the distribution of 3. The methods
My, M5 used to estimate the distribution of 5 are described in Supplementary Section 3.3.

the value for MSE (which is greater than 0), the “stronger” the evidence that our model indeed is a good
population-representative model.

Supplementary Fig. 5(a), Supplementary Fig. 6(a), and Fig. 4(a) illustrate the statistical indicators
for variations of PT parameters illustrated in Table 2(b) in the manuscript, namely, EU PT parameters,
standard PT parameters, and PT parameters as in Table 1, respectively.

3.4.2 Linear regression plots

We performed a linear regression analysis first on the aggregated data groups listed in Table 2(a), and
then on the datasets listed in Table 1 in the main manuscript.

Supplementary Fig. 7(a), Fig. 5(b), and Supplementary Fig. 7(b) illustrate the observed choice probabil-
ity vs estimated choice probability Pa using cRUM with E[3] = 4,7, 10, respectively, and the corresponding
linear regression lines, for all datagroups of Table 2(a) and all PT parameters scenarios of Table 2(b). The
same correlation analysis is plotted in Fig. 6, Supplementary Fig. 8, Supplementary Fig. 9, and Supple-
mentary Fig. 10 for each dataset of Table 1, E[3] = 4,7, 10, and all PT parameters scenarios of Table 2(b),
namely, EU PT parameters (Supplementary Fig. 10), standard PT parameters (Supplementary Fig. 9),
and PT parameters from Table 1 (Fig. 6 and Supplementary Fig. 8).

Note that the choice to consider E[3] = 4,7, 10 is inspired by the fact that the range [4, 10] approximates
the 68% confidence interval of the proposed stochastic model for 5 (Supplementary Fig. 2).
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(b): cdf of 8 obtained from eq. (9) in the main manuscript (left),
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for all datasets (colour-coded) and datagroups (black) of Tables 1 and 2(a). The proposed ambiguity indicators are
the percentage of zero and negative  values (right panels), and the 8 medians (indicated by dot symbols in the

curves, left panel).
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Supplementary Fig. 6: Standard PT parameters (Table 2(b)), to compare with Fig. 4(a). (a): Model fit in terms of
statistical measures (correlation r, MSE, p-value of ¢-test) between observed choice probability Py and predicted
choice probability Py using cRUM with E[5] € {1,2,...,20}. Blue colour signals what we consider desirable
(high correlation, low MSE, and high p-value). (b): cdf of 8 obtained from eq. (9) in the main manuscript (left),
percentage of datapoints for which 5 = 0 (top right), and percentage of datapoints for which 8 < 0 (bottom right)
for all datasets (colour-coded) and datagroups (black) of Tables 1 and 2(a). The proposed ambiguity indicators are
the percentage of zero and negative  values (right panels), and the 8 medians (indicated by dot symbols in the
curves, left panel).
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Supplementary Fig. 8: Observed choice probability vs estimated choice probability Py using cRUM and correspond-
ing linear regression line, for PT parameters from Table 1 and all datasets of Table 1. (a): cRUM with E[3] = 4;
(b): cRUM with E[8] = 10. To compare with Fig. 6 for cRUM with E[8] = 7.
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Supplementary Fig. 9: Observed choice probability vs estimated choice probability Pa using cRUM and corres-
ponding linear regression line, for standard PT parameters (Table 2(b)) and all datasets of Table 1. (a): cRUM

with E[8] = 4; (b): cRUM with E[8] =T7; (¢): cRUM with E[3] = 10.
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Supplementary Fig. 10: Observed choice probability vs estimated choice probability Py using cRUM and corres-
ponding linear regression line, for EU PT parameters (Table 2(b)) and all datasets of Table 1. (a): cRUM with
E[B] =4; (b): cRUM with E[8] = 7; (¢): cRUM with E[3] = 10.
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