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Abstract
Diversity indices of quadratic type, such as fractionalization and Simpson index, are measures of heterogeneity in a population. Even 
though they are univariate, they have an intrinsic bivariate interpretation as encounters among the elements of the population. In the 
paper, it is shown that this leads naturally to associate populations to weakly balanced signed networks. In particular, the frustration 
of such signed networks is shown to be related to fractionalization by a closed-form expression. This expression allows to simplify 
drastically the calculation of frustration for weakly balanced signed graphs.
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The paper shows that quadratic diversity indices, commonly used to quantify heterogeneity in a population, have an intrinsic network 
interpretation, provided we consider signed graphs, i.e. graphs in which positive edges represent the probability of within-group en-
counters and negative edges that of between-groups encounters. Furthermore, these diversity indices are shown to be related by 
closed-form expression to a classical measure of unbalance in signed graphs, the so-called frustration.
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Introduction
Diversity indices are univariate measures of fragmentation in a 
population, and allow to quantify the relative importance of the 
groups (representing, depending on the context, subpopulations, 
species, types, samples, etc.) that compose the population (1–3). 
They have been widely used for several decades and in many dif-
ferent domains, from Ecology (4) to Sociology (5), from Biology (6) 
to Economics (7), from Demography (8) to Political Sciences (9), 
etc.

A commonly used diversity index is the so-called fractionaliza-
tion index (10). For a population of n elements subdivided into q 
groups of cardinality c1, . . . , cq, fractionalization is defined as

F = 1 −
􏽐q

i=1 c2
i

n2 . (1) 

The fractionalization F corresponds to the probability that two 
randomly drawn elements from the population are not from the 
same group. F is also known as the Gini–Simpson index in 
Ecology (11), the Blau index (12), or the Gibbs–Martin index (13) 
in Sociology, Psychology, and Management Sciences. F can vary 

between 0 and 1 − 1
n, corresponding, respectively, to a population 

composed of a single group and to a population composed of n 
groups of size 1.

Associated to F one can consider a measure of “effective” num-
ber of groups

E =
n2

􏽐q
i=1 c2

i

=
1

1 − F
, (2) 

which is known in Political Sciences as the Laakso–Taagepera ef-
fective number of parties (9), and in Ecology as the inverse 
Simpson index—the Simpson index being defined as 

H =
􏽐q

i=1 ( ci
n )2 = 1

E (11). H is also known in Economics as the 

Herfindahl–Hirschman index (14), where the fractions of unit ci
n re-

present e.g. size of firms in an industrial sector or market shares of 
a certain product. In particular, H is frequently applied by legisla-
tors in competition law and antitrust regulation as a measure of 
market concentration in industrial sectors (15).

All the indices mentioned so far are univariate, i.e. they group 
the population along a single dimension, and are of quadratic 
type. The interpretation of F and H as probability of (pairwise) 
encounters suggests that quadratic diversity indices can be 
considered bivariate quantities, and associated to networks of 
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interactions among the entities forming the population. In fact, 
whenever a population can be split into q groups according to 
some classification dimension, then the n entities of the popula-
tion can be represented as the nodes of a graph partitioned into 
q communities, and their encounters as the edges of the graph. 
Scope of this paper is to make this association precise and to pro-
vide a network interpretation of the diversity indices.

In particular, if F represents the probability of interspecific 
(i.e. between-groups) encounters and is an index of diversity, 
H = 1 − F can be understood as probability of intraspecific (i.e. 
within-group) encounters and is a concentration index. In order 
to represent both between-groups and within-group interactions 
on a graph, we need two qualitatively different types of edges. A 
natural choice is to consider signed (undirected) graphs, and to as-
sociate positive edges to within-group interactions and negative 
edges to between-groups interactions. In other words, positive 
edges represent some form of similarity in a classification, for in-
stance, in the examples we present below, same political party or 
same ethnolinguistic group, while negative edges represent diver-
sity in the same classification, e.g. different parties or ethnolin-
guistic groups.

A key contribution of this paper is to show that the diversity in-
dices mentioned above (in particular fractionalization and effect-
ive number of groups) can be linked to well-established tools used 
to investigate signed graphs, like the notion of frustration from 
structural balance theory. Structural balance theory has been 
used for several decades in various fields ranging from Sociology 
(16) to Statistical Physics (17), from Biology (18) to Engineering 
(19). Two concepts frequently used in this theory to investigate 
the properties of signed graphs are strong and weak structural 
balance (hereafter, for short, strong and weak balance) (20–22). 
These two concepts can be easily captured by looking at a triad 
of nodes, see Fig. 1A.  A strongly balanced triad corresponds to a 
triangle graph with an even number of negative edges, while 
weak balance corresponds to a triangle not having exactly one 
negative edge (23). The two characterizations are not equivalent: 
a strongly balanced graph is also weakly balanced but not vice 
versa. This is true also for general graphs of n nodes: strong bal-
ance corresponds to the existence of a partition of the nodes in 
two disjoint factions, such that all within-faction edges are posi-
tive and all between-factions edges negative. Weak balance corre-
sponds instead to the existence of two or more groups (or 
communities) of nodes such that all edges within a group are posi-
tive and all edges between groups are negative, see Fig. 1B. By con-
struction, the signed graph associated to a population subdivided 
into q groups is weakly balanced.

In this paper, we consider such population-based weakly bal-
anced signed graphs and study their frustration (denoted ζ 
below), i.e. their “distance to strong balance” (16, 24, 25), a com-
mon measure of disorder of a signed graph, applicable also to 
the weakly balanced case (25). In particular, we obtain that 
when the edge distribution in the signed graph is uniform (i.e. 
when the connectivity of the graph follows an Erdös–Rényi mod-
el), the frustration has the interpretation of “best bipartition,” i.e. 
splitting of the q groups of the population into two disjoint fac-
tions having size (measured as sum of the cardinalities of the 
groups) which is as equal as possible. Such best bipartition is 
shown to always respect the group structure, meaning that com-
puting frustration becomes a problem of group partitioning, 
which significantly simplifies its calculation. Furthermore, it is 
shown in the paper that the value of frustration ζ is related to 
the fractionalization F by a closed-form expression, depending 
on the node excess in the aforementioned best bipartition of 

the groups. An analysis of the properties associated to the rela-
tionship between ζ and F is carried out when the group sizes of 
the population are drawn from uniform and power-law distribu-
tions. The tools developed in the paper are then applied to vari-
ous datasets drawn from Political Sciences, Demography, and 
Economics.

Results
Frustration for weakly balanced signed graphs
For graphs that are not balanced, various measures of the “dis-
tance to strong balance” (or graph unbalance) have been proposed 
in the literature (25–30). In particular, a commonly used metric for 
strong balance is the frustration index (the name comes from spin 
glass theory (17, 26), and it is sometimes also called line index of 
balance (31)), here defined as the least fraction of the total number 
of edges that must change sign in order to attain strong balance. 
For a signed graph of n nodes, if A is the signed adjacency matrix 
(of entries Aij equal to ±1 or 0), and we associate to the nodes a vec-
tor s of “spin” variables si = ±1, then the frustration ζ is the min-
imum over all possible spin assignments of the relative energy 
functional e(s):

ζ = min
si ,sj∈±1

e(s) = min
si ,sj∈±1

1
2m

􏽘

(i,j)∈E

(1 − Aijsisi), (3) 

where E is the set of edges of the graph and m is the total (ex-
pected) number of edges in the graph, see Methods for more de-
tails and Table S1 for a summary of notations. Computing ζ is 
an NP-hard problem (equivalent to solving a MAX-CUT problem 
(32)). For weak balance, the problem is more complicated, as the 
groups of nodes must first be identified. If the groups are given 
in advance, as we assume here, then frustration is still a suitable 
measure of unbalance (25).

A first result of the paper is that for weakly balanced signed 
graphs in which all edges are equiprobable (i.e. when the topology 
follows a Erdös–Rényi model), denoting F+

best and F−
best the two fac-

tions (“spin-up” and “spin-down”) in the “ground state” of Eq. 3, 
then the {F+

best, F
−
best} optimal partition always respects the group 

structure, i.e. a group is never split into two parts when computing 
the optimal spin configuration s that minimizes e(s). Such coarse- 
graining of the ground state spin assignment drastically simplifies 
the calculation of the frustration: computing ζ amounts to parti-
tioning the groups into two factions of size which is as equal as 
possible given the group sizes c1, . . . , cq. Letting nF+ and nF− be 
the size of a partition {F+, F−} of the nodes, computing ζ corre-
sponds then to solving

maxF+ nF+ (n − nF+ )
( 􏼁

, (4) 

where the max is over all possible bipartitions of the integers 
c1, . . . , cq. Theorem 1 in the supplementary material provides a 

technical proof of these statements.

Connecting frustration and fractionalization on 
weakly balanced graphs
As mentioned, on a graph, diversity with respect to the classifi-
cation dimension can be captured by the edge signature: adja-
cent nodes coparticipating in the same group are linked by 
positive edges, while adjacent nodes belonging to different 
groups are linked by negative edges. The resulting graph is 
therefore a weakly balanced signed graph by construction. A se-
cond result of the paper is that when the connectivity of the 
graph follows an Erdös–Rényi model, it is possible to obtain a 

2 | PNAS Nexus, 2024, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/2/pgae046/7599722 by guest on 19 February 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae046#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae046#supplementary-data


closed-form expression for the relationship between frustration 
ζ and fractionalization F:

ζ = F −
1
2

+
1
2

r2
best, (5) 

where the relative node excess rbest is expressed as rbest = ℓbest
n/2 , 

with ℓbest the least number of nodes in excess (with respect to 
an equal-cardinality splitting) among all possible ways to parti-
tion the q communities into two factions F+ and F− (i.e. 
ℓbest = nF+

best
− n/2, if we take nF+

best
≥ nF−

best
), see Methods. From 

F = 1 − 1
E, Eq. 5 can be reexpressed in terms of E as

ζ =
1
2

−
1
E

+
1
2

r2
best, (6) 

i.e. the frustration ζ and the effective number of parties E are in-
versely related. Since rbest = nF+

best
/(n/2) − 1, the practical mean-

ing of Eq. 5 is that as soon as the number of groups is 
sufficiently high (and hence a 50–50% splitting becomes more 
likely to exist, implying rbest ≈ 0) then frustration becomes es-
sentially equal to fractionalization, up to the additive constant 
1/2.

In order to explore the properties of the relationship in Eq. 5, 
we generated numerical examples of populations with different 
group size distributions, uniform (Fig. 2) and power-law (Fig. 3). 
In Fig. 2, weakly balanced signed Erdös–Rényi networks of size 
n = 104 with q = 2, 3, . . . , 20 groups of randomly generated size ci 

(such that 
􏽐q

i=1 ci = n) are produced and their fractionalization 
F, frustration ζ, and effective number of groups E are computed. 
As expected, both F and ζ grow with q. Furthermore, ζ and F be-
come essentially identical (up to the 1/2 constant) as soon as 
q ≃ 8, see Fig. 2A. In other words, for q large enough, ζ = F − 1

2 is 
a valid approximation, meaning that F (an easily computable in-
dex) can be used to estimate ζ (which is NP-hard to compute even 
for weakly balanced Erdös–Rényi graphs). Deviations from this 
heuristic rule can occur only in two situations, detailed below, 
which essentially exhaust the spectrum of possibilities for which 
rbest > 0 and hence ζ ≠ F − 1

2. The first and most important situ-
ation is when there exists a single group which is larger than 
n/2, and hence splitting into two factions, while respecting the 
partition into the groups necessarily leads to a node excess on 
the side of the largest group. In these cases, rbest > 0, see 
Fig. 2A. Most of these cases correspond to low fractionalization, 
since the presence of a large ci renders the sum 

􏽐
i c2

i /n
2 close to 

1. These cases also normally lead to low frustration, as the large 
block corresponding to the big ci leaves little room for off- 
diagonal edges with negative signs. A second situation in which 
minor deviations between ζ and F can occur is when three large 
groups of approximately the same size exist (e.g. ∼ 30% each). 
See the smaller bump for higher values of frustration and frac-
tionalization in Fig. 2A. For instance, in the example of Fig. 1B, 
three similarly large groups make around 93% of the nodes, 
and the best bipartition has a node excess ℓbest > 200 out of 

A B

C D

Fig. 1. Strongly and weakly balanced signed graphs. A) Strong and weak balance in terms of elementary triplets. A triplet is strongly balanced if it contains an 
even number of negative edges, and weakly balanced if it does not contain exactly one negative edge. B) Example of weakly balanced graph of size n = 1,000 
with 6 groups, of size ci = 326, 13, 32, 19, 311, 299. The panel shows the corresponding adjacency matrix A (in blue: positive edges; in red: negative edges). 
C) Each group can be condensed into a single node in the matrix W (see Methods), with edge weights between groups i and j becoming Wij = pcicj. In the 
panel, node size is proportional to ci and edge width to cicj. The optimal partition into two factions is F+

best = {5, 6} and F−
best = {1, 2, 3, 4} (dashed yellow line) 

and ℓbest = 220 (i.e. rbest = 0.44). D) What is shown is the adjacency matrix after an optimal “gauge transformation”: when the spin variables in F−
best and 

F+
best are associated with −1 and +1, respectively, and placed on the diagonal of a matrix S, then in the gauge transformed adjacency matrix SAS the 

off-diagonal blocks change sign. The residual number of negative edges (normalized by the total number of edges) gives the frustration of the graph.
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n = 1,000 nodes. In this case, ζ = 0.43 and F = 0.71. With the exclu-
sion of the two aforementioned situations, we can conclude that 
on weakly balanced signed graphs the expression ζ = F − 1

2 can be 
used to avoid the NP-hard computation of the frustration ζ. 

Notice further in Fig. 2A how the dispersion existing in the frus-
tration vs. fractionalization scatter plot gets significantly com-
pressed when instead we look at frustration vs. effective 
number of groups. The price to pay for that compression is a 

A B

C

Fig. 2. Fractionalization vs. frustration in a weakly balanced network with group size distributed uniformly. Weakly balanced signed Erdös–Rényi networks of 
size n = 104 were generated containing q = 2, . . . , 20 groups (100 instances for each q), see colorbar. A) Scatter plots of frustration ζ vs. fractionalization F, 
relative node excess rbest, and effective number of groups E. Inset in middle panel: rbest may be >0 even when each group has size ci < n/2 (e.g. when there are 
three groups of similar size). B) 3D scatter plot of ζ, F, and rbest. C) Left panel: F is equal to the fraction of negative edges. Second and third panels: F and ζ both 
tend to grow with the number of groups q, and so does E (inset in the right panel). Right panel: the correlation between ζ and F approaches 1 when q grows.

A B

C

Fig. 3. Fractionalization vs. frustration in a weakly balanced network with groups size distributed according to a power-law. The exponent γ is chosen 
between 2 and 3, see colorbar. One hundred instances of size n = 104 are considered for each γ. A) Scatter plots of frustration ζ vs. fractionalization F, 
relative node excess rbest, and effective number of groups E. Inset in middle panel: rbest is >0 only when there is a group of size ci > n/2. Notice how the 
relationship between ζ and F is now much more precise than in the uniform case: only one large component (exceeding 50% of the nodes) is present in 
basically all low frustration instances, regardless of the power exponent γ. In the inset in the right panel, median (circles) and quartiles (horizontal bars) of 
rbest are overlapping for all values of γ, meaning that the vast majority of samples has rbest = 0. B) 3D scatter plot of ζ, F, and rbest. C) Left panel: degree 
distribution of the group sizes ci. Second and third panels: ζ and F as function of γ. Circles are medians and bars quartiles. No clear trend in γ is observed. 
Right panel: the correlation between ζ and F is >0.95.
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nonlinear dependence between ζ and E, as opposed to the linear 
dependence between ζ and F, see Eq. 6.

When instead the size c of the groups forming the population is 
drawn from a power-law distribution, P(c) ∼ c−γ, as in Fig. 3, then 
the presence of an abundant number of small groups favors the 
existence of an equal-cardinality bipartition, except when a large 
component exceeding 50% of the nodes is present. When this hap-
pens, rbest > 0, and the relationship between ζ and F tends to follow 
a curve which is nonlinear (see leftmost panel in Fig. 3A), but 
much more regular than for the uniform size case, as can be ap-
preciated comparing the low ζ regions in Figs. 3A and 2A. In fact, 
in the power-law case, the correlation between ζ and F is >0.95 
for all power-law exponents γ we consider. The case of three 
equally large groups essentially never appears for power-law gen-
erated group sizes, and basically all networks with low ζ corres-
pond to cases in which rbest > 0. This determines the “rigid” 
relationship among ζ, F, and rbest seen in Fig. 3B.

Applications
We consider three different classes of real-world population data-
sets for which diversity indices are available, and compute the as-
sociated signed networks by putting each group in a network 
community characterized by internal positive edges and by nega-
tive edges connecting it with the other communities, so that the 
networks have the signed block structure shown in Fig. 1B. The 
edge probability is p (0 < p ≤ 1) for the entire network, i.e. the net-
works have an Erdös–Rényi structure. This simple modeling 
choice is reasonable for a “no a priori information” setting, like 
when the only information available is the number and size of 
the groups (i.e. q and ci, i = 1, . . . , q).

Parliamentary networks
The first class of data corresponds to elected Members of 
Parliament (MPs) for 29 European countries over around four dec-
ades. The data were collected in Ref. (33) where they are described 
in more detail. Nodes are MPs and groups are political parties. For 
each country, after every general election, a new parliamentary 
network is produced. See Fig. S1 for the associated values of q 
(number of political parties) and Fig. S4 for the group size 
distribution.

Ethnolinguistic networks
The second class of data corresponds to fractions of population of 
a country according to the ethnolinguistic group they belong to. 
The data are taken from the Historical Index of Ethnic 
Fractionalization dataset (34). The dataset covers annually the pe-
riod 1945–2013 for 165 countries across all continents. In this case, 
if nodes are individuals, n is in the order of millions. Under the as-
sumption of random connectivity with equiprobable edges, it is 
convenient to map the population fractions into the weighted ad-
jacency matrix W described in Eq. 7 of the Methods section, which 
condensates each ethnolinguistic group into a single node, and 
whose edge weights are proportional to the products of the popu-
lation fractions of the two incident nodes of each edge. A matrix W 
is produced per country and per year. The number of groups in 
these matrices is given in Fig. S2, while the group size distribution 
is given in Figs. S5–S10.

Market shares of smartphone brands
Market shares of smartphone sales for the main manufacturers 
were downloaded from https://gs.statcounter.com/vendor- 
market-share for 22 countries in the years between 2015 and 

2022. Similarly to the previous case, for each country a network is 
built by letting each brand be a node and connecting each node 
to any other node with a weight representing the product of the 
market fractions of the two brands incident to the edge. In this 
way, a weighted adjacency matrix W described in Eq. 7 is obtained 
for each year and for each country. The number of brands is given 
in Fig. S3 and the associated marker shares in Fig. S11.

Analysis
The analysis of the parliamentary networks shows, as expected 
for multiparty democracies, that the situation by far most 
common is a system in which no single party is above 50% of 
the seats. Consequently, the most common regime for our meas-
ures is the one in which ζ ≈ F − 1

2, see Fig. 4A, with only minor ex-
ceptions for some legislatures in countries like Albania, North 
Macedonia, Serbia, and UK, see the details in Fig. S12. In fact, 
the correlation between ζ and F is on average 0.99, see rightmost 
panel in Fig. 4A. The same regime is followed by the market shares 
data, which also show an average correlation between ζ and F of 
0.99, see Fig. 4C. Also in this case, the high fragmentation of the 
market (contended among many different companies) leads to a 
small ℓbest. The only exception is Japan, where in fact the market 
is dominated by Apple with more than 65% of sold devices every 
year, see Fig. S13. The situation is somewhat different for the 
ethnolinguistic networks, where many states have homogeneous 
population or at least a large majority from a single ethnolinguis-
tic group. This is true especially for the European countries, less 
for African countries, see details in Figs. S14–S19 and also the 
time evolution of frustration in Fig. 5. Ethnolinguistic homogen-
eity obviously translates into group size distribution which is 
markedly of power-law type, see Figs. S5–S10. From Fig. 4B, the 
correlation between ζ and F is still around 1 for most countries, 
with a few exceptions such as Algeria, El Salvador, Mauritius, 
Syria, and Thailand, all countries which are characterized by the 
presence of a large majoritarian ethnolinguistic group and two 
more minorities which impact in opposite ways the changes 
(over time) in ζ and F.

Time evolution of frustration
The time course of frustration for the three classes of empirical 
signed networks is shown in Fig. 5. What can be seen is that the 
frustration in the parliamentary networks is tendentially growing 
in the four decades of elections we monitor. This effect is analyzed 
and circumstantiated more in detail in Ref. (33), and reflects the 
increased fragmentation (i.e. F increases) of the political arena, 
with the collapse of the traditional ideological parties of the last 
century and the rise of different forces in many European coun-
tries, from green parties to protest movements, from nationalistic 
to populistic parties.

The trend toward increased fragmentation and therefore to-
ward increased frustration in the associated signed networks ap-
pears to some extent also in the ethnolinguistic networks, 
although not for all continents. While in Asia, America, and 
Europe frustration seems to be growing, the opposite trend is ob-
served in Africa. Notice that the starting point for many African 
nations (which is temporally located around 1960 in our dataset) 
is at a much higher frustration level than for the other continents, 
reflecting the way many African states were created, as postcolo-
nian entities rather than as homogeneous ethnolinguistic groups. 
This is visible also on the group size distributions, which are often 
deviating from a power law, see Figs. S5 and S6. In this respect, 
European countries lie at the other end of the spectrum and for 
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them (as for Asian and American countries, see Figs. S6–S10) the 
increase of frustration is likely a consequence of recent migratory 
movements and of globalization. Notice the opposite trend fol-
lowed by most of the newly formed states emerged after the dis-
solution of Yugoslavia and Soviet Union in the nineties.

Discussion
Quantifying diversity in heterogeneous populations has been an 
important issue for several decades in a number of fields. While 
there exists a broad range of proposed measures (1, 2, 6), the quad-
ratic indices considered in this paper are among the most popular 
in basically all fields. One of the reasons behind their widespread 
use is the (explicit or implicit) interpretation that can be given to 
quadratic indices as “encounters” among entities (or individuals, 
species, instances, etc.) of the different groups forming the popu-
lation. Under the assumption of uniformity of such encounters, 
this interpretation leads naturally to constructing networks of in-
teractions. Equally naturally, such networks must be signed, as 

signs are the simplest way to represent the two classes of interac-
tions that characterize groups in a population: within-group and 
between-groups. The signed networks representation is by con-
struction weakly balanced, with the groups that form the popula-
tion appearing as communities in the network. Such modeling 
process seems all very straightforward and allows to build net-
work interpretations of the quadratic diversity indices. For in-
stance, the Simpson index H is often considered a weighted 
arithmetic mean of the proportional abundances ci

n, where the 
weights are the proportional abundances ci

n themselves (1). The ra-
tionale behind this interpretation is that larger groups should be 
given larger representation when their importance is summarized 
into a scalar measure, a phenomenon called “class-size paradox” 
in Refs. (35, 36).a While this “size-biased sampling” phenomenon is 
a reasonable effect accepted in statistics, the choice of weights 
equal to the proportional abundances ci

n is just a convenient way 
to avoid arbitrary weights. In our network interpretation, instead, 
within-group encounters are intrinsically given by squared propor-
tional abundances. In particular, since the number of edgesb is 

A

B

C

Fig. 4. Frustration and fractionalization in various applications. A) Parliamentary networks. B) Ethnolinguistic networks. C) Smartphone market shares. 
In each subfigure, the scatter plots of ζ vs. F, rbest, and E are shown in the three main panels, and the correlation between ζ and F in the right panel. Each 
country is represented by a different marker/color. The lines connect points that are consecutive in time for each country. The gray lines correspond to 
ζ = F − 1

2 and ζ = 1
2 − 1

E (i.e. rbest = 0).
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m = pn2, 
c2

i
n2 = pc2

i
m is the amount of positive edges of the ith group 

over the total of edges; hence, H =
􏽐q

i=1
c2

i
n2 = p

􏽐q

i=1
c2

i
m represents the 

fraction of positive edges. Consequently, F = 1 − H represents the 
fraction of negative edges. The effective number of groups 

E = 1
H = m

p
􏽐q

i=1
c2

i 

is an equivalent number of groups: it represents 

the number of equal-size groups which would have yield the 
same value of the Simpson index H (i.e. the same fraction of posi-
tive edges) as do the actual unequal groups (37). Such measure 
does not seem to have a classical interpretation in the theory of 
signed graphs. It might be of relevance when classifying weakly 

balanced signed networks, or in the inverse problem of commu-

nity detection on signed graphs (38, 39).
For Erdös–Rényi networks, the relationships between the diver-

sity indices and frustration are valid regardless of the group size 

distribution. In fact, heterogeneity in group size does not induce 

heterogeneity in edge degree distribution, but only in signed edge 

degree distribution, and both F and ζ capture such difference. 

When instead the edge distribution deviates from an Erdös–Rényi 

model, the formulae for ζ and F may deviate from each other. A sim-

ple enough case is when the probability of positive edges differs 

from that of negative edges, i.e. when the edge density in the 

A

B

C

Fig. 5. Frustration over time in various applications. A) Parliamentary networks. B) Ethnolinguistic networks. C) Smartphone market shares. In panels A 
and C, the time course of frustration for the various countries is shown in gray. The yearly means is highlighted in blue and the linear fit in red. In panel B, 
the data are split across continents and the same quantities are shown. The discontinuities in the mean correspond essentially to new countries being 
added to (or removed from) the database.
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diagonal and off-diagonal blocks of A differs. As shown in Theorem 
2 of the supplementary material, in this case the formulae for ζ, F, 
and H, including Eq. 5, hold with only minor corrections.

Several measures, alternative to frustration, have been pro-
posed in the literature to quantify strong (and weak) unbalance, 
see e.g. Refs. (25, 27–29). They range from counting cycles, possibly 
discounting for cycle length, to computing eigenvalues of a signed 
Laplacian matrix associated to our matrix A (40). In the 
supplementary material, we consider three such measures, taken 
from Refs. (27, 28, 40), and compare them with ζ and F. No signifi-
cant extra relationship between the diversity indices and these 
alternative “distance to balance” measures emerges from the ana-
lysis, see Fig. S20.

The formalism of signed graphs was first developed in the field of 
Social Psychology as a way to formalize heuristic concepts like “the 
enemy of my enemy is my friend” and similar triadic relationships 
(24, 41). In fact, in a large part of the literature, positive edges are 
still given some form of positive connotation (friendship between 
individuals, alliance between political actors, trust among commu-
nicating computer nodes, collaboration between businesses, etc.), 
while negative edges represent instead an antagonistic attitude 
(unfriendliness between individuals, rivalry between political ac-
tors, mistrust among computers, competition between businesses, 
etc.). In this work, instead, edge signs are primarily a way to distin-
guish the two categories that enter into a diversity index (within- 
and between-groups interactions), not necessarily redirecting to a 
friendly/unfriendly connotation. For the data we analyze, such con-
notation may or may not be present. For instance, for the parlia-
mentary networks, we can reasonably assume that MPs of the 
same party collaborate with each other and are rival of the MPs 
of the other parties. For the smartphone market shares, an associ-
ation between individuals based on their choice of smartphone 
brand is a rather weak and unsubstantial one, while it makes sense 
to consider negative edges as an expression of competition among 
smartphone brands in the aggregated network W.

If we think of frustration as “disorder” in a signed graph, then an 
increase of fragmentation in a population leads to an increase in the 
disorder encoded in the associated network. The consequences of 
an increased disorder are context-dependent and their interpret-
ation may be sometimes controversial. For instance, we have shown 
in Ref. (33) that in the political arena an increased frustration re-
flects into an increased difficulty in the governance of a country, 
in particular into a longer negotiation phase in the government for-
mation process that follows a general election. However, we notice 
that the opposite of high fractionalization (and of high frustration), 
that is, strong balance, corresponds to single party rule but also to 
two-party systems. The canonical example in this context is the 
US political system (42, 43), which, in spite of being strongly bal-
anced, has its own problems when it comes to political governance 
even though it lacks disorder. On a similar tone, ethnolinguistic 
fragmentation has sometimes been associated to higher degree of 
conflict in a society, possibly leading to lack of social cohesion, prej-
udices, and to political and economical costs (7, 44). On the other 
hand, researchers have observed that ethnical heterogeneity has 
also benefits, e.g. diverse-thinking approaches can lead to an in-
creased capacity for problem solving and may nurture economic 
growth (8, 45, 46). The fact that antitrust bodies forbid industrial 
sectors with high H (and hence with low F and low ζ) is another ex-
ample that “disorder” may have virtuous effects.

The three classes of examples we present aim to highlight the 
different features of the weakly balanced structure in the graphs 
which we consider in the paper: nodes can be elements of the 
population (as for the parliamentary networks), but for extremely 

large populations (as in the ethnolinguistic networks), under an 
assumption of equiprobable edges, a compact representation, 
lumping together all elements of a group into a single node and re-
scaling the edge weights according to the group size, is readily 
available through the condensed matrix W. Such a representation 
is meaningful in a broader context, in which diversity indices are 
used and useful for the group-level condensed network but maybe 
not so much for the individual-level networks (as for the smart-
phone market shares).

A challenging problem ahead is to use some of the tools presented 
in this paper for community detection problems, in which a signed 
graph is given but not a group partition, in the style of Refs. (38, 39). 
We notice that the assumption made here of homogeneous edge de-
gree distribution is used in the so-called constant Potts model ap-
proach (47, 48) to community detection, even though mostly for 
unsigned graphs. How to exploit diversity measures in this context 
for signed graphs is a problem that still needs to be explored.

Methods
Strong and weak balance for signed graphs
Consider an undirected signed graph G = {V, E, A}, where 
V = {1, . . . , n} is the node set, E = V × V is the edge set, and A is an 
n × n symmetric signed adjacency matrix of elements 
Aij ∈ {0, ± 1}. We assume that each edge is equiprobable with 
probability p, and call m = pn2 the (expected) number of edges.

A signed graph is said strongly balanced if there exists a partition 
of the nodes into two factions F+ and F−, with F− ∪ F+ = V and 
F− ∩ F+ = ∅, such that i, j ∈ F+ (or i, j ∈ F−) corresponds to 
Aij ≥ 0, while i ∈ F− and j ∈ F+ corresponds to Aij ≤ 0.

The frustration of a signed graph G is defined as the least fraction 
of edges that must change sign in order to achieve strong balance. 
It can also be expressed as the minimum over all “spin” assign-
ments si = ±1 of the “energy” functional e(s) = 1

2m

􏽐
i,j∈E (1 − Aijsisj) 

as in Eq. 3. Notice that in matrix form e(s) = 1T(|A| − SAS)1, where 
1 = [1 . . . 1]T ∈ Rn is the vector of all 1, S = diag{s1, . . . , sn} is a diag-
onal matrix of entries ±1, and |A| = abs(A) (49). The matrix SAS is 
sometimes called a gauge transformation of A (26).

A signed graph is said weakly balanced if the adjacency matrix A 
has a block diagonal structure in which the q > 1 diagonal blocks 
have all nonnegative edges and the off-diagonal blocks have all 
nonpositive edges, see Fig. 1B. The q diagonal blocks correspond 
to groups of nodes which we denote C1, . . . , Cq, of dimension 
c1, . . . , cq such that 

􏽐q
i=1 ci = n, Ci ∩ Cj = ∅, 

􏽓q
i=1 Ci = V.

For block partitioned weakly balanced matrices, it is possible to 
“condensate” each block into a single node, obtaining the q × q 
signed weighted adjacency matrix

W = p

c2
1 −c1c2 . . . −c1cq

−c1c2 c2
2

..

. . .
.

−c1cq c2
q

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦
. (7) 

As shown in the supplementary material, this allows to reexpress 
frustration in term of W as

ζ =
1

2m
min

Sq=diag{s1,...,sq} si=±1

1T
q (|W| − SqWSq)1q, (8) 

where 1q ∈ Rq and Sq = diag{s1, . . . , sq} is a q × q diagonal matrix of 

±1 (one for each block). That is to say, the minimum of the energy 
functional e(s) corresponds to an equal-size (or as equal as pos-

sible) splitting of the groups into the two factions F− and F+, 
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and computing ζ reduces to computing such optimal group parti-
tion of C1, . . . , Cq, denoted {F+

best, F
−
best}. Direct computations (see 

Theorem 1 in the supplementary material) show that

ζ =
p
m

min
F+

􏽘

i,j∈F+

i≠j

cicj +
􏽘

i,j∈F−

i≠j

cicj

⎛

⎜
⎝

⎞

⎟
⎠, (9) 

i.e. what is minimized is the total amount of edges in the off- 
diagonal subblocks on each side of the partition, see Fig. 1 for an 
interpretation.

Fractionalization and other diversity indices
Given a population of n elements, split into q groups of cardinality 
c1, . . . , cq, the fractionalization index F (also known as the Gini– 
Simpson index, or Blau index, or Gibbs–Martin index) is given 
by Eq. 1. Associated to F are the effective number of groups E 
(also known as the Laakso–Taagepera effective number of parties 
or the inverse Simpson index), defined as in Eq. 2, and the 
Simpson index (also known as the Herfindahl–Hirschman index) 
H = 1

E = 1 − F.

Fractionalization and weakly balanced signed 
networks
There is a natural way to associate a splitting of a population into q 
groups with a weakly balanced signed network, and it consists in 
associating each group with a block in a signed block matrix A as 
the one described above. F, which represents the probability that 
two entities from the population do not belong to the same group, 
corresponds in this representation to the fraction of negative 
edges of A, see Fig. 1C, while H (probability of within-group en-
counters) becomes the fraction of positive edges of A.

Frustration and fractionalization
Letting nF+ and nF− be the cardinalities of the F+ and F− factions, 
nF+ + nF− = n, then it is also (see Theorem 1 in the supplementary 
material)

ζ = F −
2
n2 max

F+
nF+ (n − nF+ )
( 􏼁

. (10) 

The maximum in this expression is obtained when nF+ = n − nF+ 

if possible, i.e. when the optimal partition of the maximization 
in Eq. 4, F+

best, F
−
best, has cardinality nF+

best
= nF−

best
= n/2. When 

such a partition into equally sized factions exists, then it is 
ζ = F − 1/2. In all other cases, one of the two optimal factions 
F+

best, F
−
best (say F+

best) will be larger than the other. Letting 

nF+
best

= n
2 + ℓbest, where ℓbest is the node excess in the best biparti-

tion of C1, . . . , Cq, then we get the relationship in Eq. 5 between ζ 
and F, i.e. the frustration is directly proportional to the fractional-

ization up to the correction factor rbest = ℓbest
n/2 , see Theorem 1 in the 

supplementary material.
As we vary q and n, F ∈ [0, 1 − 1

n ] and ζ ∈ [0, 1/2]. When q = 1 
then F = 0 and ζ = 0, since ℓbest = n/2. When q = 2 then the graph 
is always strongly balanced (i.e. ζ = 0) but F ≠ 0. When q = n (i.e. 
all groups have dimension 1), then

ℓbest = 0 if n even
1 if n odd

􏼚

and F = 1 − 1/n, meaning that

ζ = 1/2 − 1/n if n odd
1/2 − (n − 2)/n2 if n even

􏼚

and limn→∞ζ = 1/2. It can be shown that ζ is always upper bounded 
by 1/2.

Invariance to edge density
For Erdös–Rényi weakly balanced signed graphs (i.e. graphs in 
which each edge appears with a probability 0 < p ≤ 1, and in 
which the sign pattern is that of a weakly balance graph), the 
definition of F, H, and E is invariant to edge density. In fact, 

for any edge probability p, from m = pn2, H =
􏽐q

i=1
pc2

i
pn2 =

􏽐q

i=1
c2

i
n2 , and 

similarly for F and E. As can be deduced from Eq. 9, also ζ is invari-
ant to p (recall that ζ is defined as the fraction of edges that must 
change sign to get strong balance). As we vary p, also the least 
number of edges that must flip sign to achieve strong balance 
must be rescaled according to p, but the fraction of such edges 
over the total is unchanged, hence so is the frustration ζ.

Computing frustration for weakly balanced 
Erdös–Rényi networks
The expression in Eq. 10 attains its minimum when C1, . . . , Cq are 
partitioned into two factions of equal, or as equal as possible, size. 
Hence, the computation of ζ reduces to the calculation of 
F+

best, F
−
best that solve Eq. 4. Such a problem is computationally 

much more efficient than solving Eq. 3. The number of possible 
combinations still grows exponentially as 2q−1, but for moderate 
sizes the minimum can be computed exactly, while for large q 
heuristics can be found. These algorithms are particularly effect-
ive when the number of groups is sufficiently high (since 
􏽐q

i=1 ci = n, q large means that many groups of relatively small 
size must exist for a given n). The “ground state” is typically degen-
erate in these cases, i.e. many optimal partitions F+

best, F
−
best exist, 

all corresponding to the same ζ.

Notes
a H is also the contraharmonic mean of the proportional abundances 

ci
n. As such, it can be considered the sum of the arithmetic mean 
and the variance of the ci

n divided by their arithmetic mean, see 
Refs. (35, 36).

b Since p is a probability, m is the expected number of edges. The adjec-
tive “expected” is disregarded thereafter. On a similar tone, to reduce 
bookkeeping, edges are counted twice and self-loops (i.e. diagonal el-
ements Aii) are also counted when present, meaning that when p = 1, 
m = n2. When edges are counted with a precise formula ( m = p n2+n

2 if 
Aii = 1 for all i, m = p n2−n

2 when Aii = 0 for all i), then an additional con-
stant may appear in ζ in Eq. 3 and in the relation of Eq. 5. Since e(s) and ζ 
are always defined up to an additive constant (26), this factor can be 
disregarded for simplicity of exposition.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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Data Availability
All data are publicly available (parliamentary networks: supple-
mentary material of Ref. (33); ethnolinguistic networks: down-
loaded from Ref. (34); smartphone market shares: downloaded 
from https://gs.statcounter.com/vendor-market-share). The data 
and code used in this study are available at https://zenodo.org/ 
records/10479515.
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