Amritam Das - Publication List

PhD Thesis

2020

  1. A. Das. A digital twin for controlling thermo-fluidic processes. PhD thesis, 2020. [Google Scholar]

Preprints

2025

  1. S. Shivakumar, D. Jagt, D. Braghini, A. Das, M. Peet. PIETOOLS 2024: User Manual. arXiv preprint arXiv:2101.02050, 2025. [arXiv]
  2. E. J. Olucha, P. J. Koelewijn, A. Das, R. Tóth. Automated Linear Parameter-Varying Modeling of Nonlinear Systems: A Global Embedding Approach. arXiv preprint arXiv:2502.13082, 2025. [arXiv] Nonlinear Control
  3. D. Selvaratnam, A. Moreschini, A. Das, T. Parisini, H. Sandberg. Frequency-Domain Bounds for the Multiconductor Telegrapher's Equation. arXiv preprint arXiv:2504.01599, 2025. [arXiv]
  4. D. Selvaratnam, A. Moreschini, A. Das, T. Parisini, H. Sandberg. Fault Localisation in Infinite-Dimensional Linear Electrical Networks. arXiv preprint arXiv:2504.04910, 2025. [arXiv] Control of PDEs Fault Diagnosis
  5. J. P. Krebbekx, R. Tóth, A. Das. Nonlinear Bandwidth and Bode Diagrams based on Scaled Relative Graphs. arXiv preprint arXiv:2504.01585, 2025. [arXiv] Nonlinear Control
  6. E. J. Olucha, R. Singh, A. Das, R. Tóth. On-the-fly Surrogation for Complex Nonlinear Dynamics. arXiv preprint arXiv:2504.00276, 2025. [arXiv] Nonlinear Control Machine Learning
  7. J. Rap, A. Das. ON-Traffic: An Operator Learning Framework for Online Traffic Flow Estimation and Uncertainty Quantification from Lagrangian Sensors. arXiv preprint arXiv:2503.14053, 2025. [arXiv] Machine Learning
  8. T. Meijer, A. Das, S. Weiland. Moving-Boundary Port-Hamiltonian Systems. arXiv preprint arXiv:2501.14930, 2025. [arXiv]

2024

  1. E. J. Olucha, B. Terzin, A. Das, R. Tóth. On the reduction of linear parameter-varying state-space models. arXiv preprint arXiv:2404.01871, 2024. [arXiv]
  2. J. P. Krebbekx, R. Tóth, A. Das. Scaled Relative Graph Analysis of Lur’e Systems and the Generalized Circle Criterion. arXiv preprint arXiv:2411.18318, 2024. [arXiv] Nonlinear Control

2022

  1. S. Shivakumar, M. Peet. H∞-optimal control of coupled ODE-PDE systems using the PIE framework and LPIs. Technical report, arXiv. org. https://arxiv. org/abs/2208.13104, 2022. [Google Scholar] Control of PDEs
  2. S. Shivakumar, A. Das, M. Peet. Dual Representations and -Optimal Control of Partial Differential Equations. arXiv preprint arXiv:2208.13104, 2022. [arXiv] Control of PDEs
  3. S. Shivakumar, A. Das, M. Peet. -optimal control of coupled ODE-PDE systems using PIE framework and LPIs. arXiv preprint arXiv:2208.13104, 2022. [arXiv] Control of PDEs
  4. T. Chaffey, A. Das, R. Sepulchre. Splitting algorithms and circuit analysis. arXiv preprint arXiv:2208.04765, 2022. [arXiv]

2018

  1. A. Das, S. Shivakumar, S. Weiland, M. Peet. Representation and stability analysis of pde-ode coupled systems. arXiv preprint arXiv:1812.07186, 2018. [arXiv] Control of PDEs

Book Chapters

2024

  1. A. Das, R. R. Kolluri, I. Mareels. Data industry. The Impact of Automatic Control Research on Industrial Innovation: Enabling a Sustainable Future, 2024. [Google Scholar]

2023

  1. A. Alleyne, F. Allgöwer, A. D. Ames, S. Amin, J. Anderson, A. M. Annaswamy, P. J. Antsaklis, N. Bagheri, H. Balakrishnan, B. Bamieh, J. Baras, M. Bauer, A. Bayen, P. Bogdan, S. L. Brunton, F. Bullo, E. Burdet, J. Burdick, L. Burlion, C. C. d. Wit, M. Cao, C. G. Cassandras, A. Chakrabortty, G. Como, M. Csete, F. Dabbene, M. Dahleh, A. Das, E. Dassau, C. D. Persis, M. d. Bernardo, S. D. Cairano, D. Dimarogonas, F. Dörfler, J. C. Doyle, F. J. D. III, A. Dragan, M. Egerstedt, J. Eker, S. Fay, D. Filev, A. Fontan, E. Franco, M. Fujita, M. Garcia-Sanz, D. Gayme, W. Heemels, J. P. Hespanha, S. Hirche, A. Hosoi, J. P. How, G. Hug, M. Ilić, H. Ishii, A. Jadbabaie, M. Jafarian, S. Q. Jia, T. Johansen, K. H. Johansson. Control for societal-scale challenges: Road map 2030. IEEE Control Systems Society, 2023. [Google Scholar]

Journals

2024

  1. S. Shivakumar, A. Das, S. Weiland, M. Peet. Extension of the partial integral equation representation to GPDE input-output systems. IEEE Transactions on Automatic Control, 2024. [Google Scholar] Control of PDEs
  2. P. P. Khargonekar, T. Samad, S. Amin, A. Chakrabortty, F. Dabbene, A. Das, M. Fujita, M. Garcia-Sanz, D. F. Gayme, M. Ilić, I. Mareels, K. L. Moore, L. Y. Pao, A. Rajhans, J. Stoustrup, J. Zafar, M. Bauer. Climate change mitigation, adaptation, and resilience: Challenges and opportunities for the control systems community. IEEE Control Systems Magazine, 2024. [DOI]

2022

  1. A. Das, T. Chaffey, R. Sepulchre. Oscillations in mixed-feedback systems. Systems & Control Letters, 2022, 2022. [DOI] Nonlinear Control

2020

  1. R. J. v. Kampen, A. Das, S. Weiland, M. v. Berkel. A closed-form solution to estimate spatially varying parameters in heat and mass transport. IEEE Control Systems Letters, 2020. [Google Scholar] Control of PDEs
  2. A. Das, M. Princen, M. Shokrpour, A. Khalate, S. Weiland. Soft Sensing Based In Situ Control of Thermo-Fluidic Processes in DoD Inkjet Printing. IEEE Transactions on Control Systems Technology, 2020. [DOI]

Conferences

2024

  1. A. Das, J. Heiland. Low-order linear parameter varying approximations for nonlinear controller design for flows. 2024 European Control Conference (ECC), 2024. [DOI] Nonlinear Control
  2. M. Aguiar, A. Das, K. H. Johansson. Learning flow functions of spiking systems. 6th Annual Learning for Dynamics & Control Conference, 2024. [Google Scholar] Machine Learning
  3. V. Gori, W. Hendrix, A. Das, Z. Sun. Effect of weight distribution and active safety systems on electric vehicle performance. Sensors, 2024. [DOI]

2023

  1. M. U. B. Niazi, J. Cao, X. Sun, A. Das, K. H. Johansson. Learning-based design of Luenberger observers for autonomous nonlinear systems. 2023 American Control Conference (ACC), 2023. [DOI] Nonlinear Control Machine Learning
  2. M. Aguiar, A. Das, K. H. Johansson. Universal approximation of flows of control systems by recurrent neural networks. 2023 62nd IEEE Conference on Decision and Control (CDC), 2023. [DOI] Machine Learning
  3. D. Selvaratnam, A. Das, H. Sandberg. Electrical Fault Localisation Over a Distributed Parameter Transmission Line. 2023 62nd IEEE Conference on Decision and Control (CDC), 2023. [DOI] Control of PDEs Fault Diagnosis
  4. M. Aguiar, A. Das, K. H. Johansson. Learning Flow Functions from Data with Applications to Nonlinear Oscillators. IFAC-PapersOnLine, 2023. [DOI] Nonlinear Control Machine Learning
  5. S. Shivakumar, A. Das, M. M. Peet. Representation of linear PDEs with spatial integral terms as Partial Integral Equations. 2023 American Control Conference (ACC), 2023. [DOI] Control of PDEs

2021

  1. R. J. v. Kampen, A. Das, S. Weiland, M. v. Berkel. A closed-form solution to estimate space-dependent parameters in heat and mass transport. Physics@ Veldhoven 2021, 2021. [DOI] Control of PDEs
  2. S. Shivakumar, A. Das, D. Jagt, M. Peet. PIETOOLS 2021a. http://control.asu.edu/pietools/, 2021. [Google Scholar]

2020

  1. S. Shivakumar, A. Das, S. Weiland, M. M. Peet. Duality and H∞-Optimal Control Of Coupled ODE-PDE Systems. 2020 59th IEEE Conference on Decision and Control (CDC), 2020. [DOI] Control of PDEs
  2. S. Shivakumar, A. Das, M. M. Peet. PIETOOLS: A MATLAB toolbox for manipulation and optimization of partial integral operators. 2020 American Control Conference (ACC), 2020. [DOI]
  3. A. Das, S. Shivakumar, M. Peet, S. Weiland. Robust analysis of uncertain ODE-PDE systems using PI multipliers, PIEs and LPIs. 2020 59th IEEE conference on decision and control (CDC), 2020. [DOI] Control of PDEs
  4. R. v. Kampen, A. Das, S. Weiland, M. v. Berkel. Complex Gaussian Process Regression for Estimating Spatially Varying Coefficients in Thermal Transport. 39th Benelux Meeting on Systems and Control 2020, 2020. [Google Scholar] Control of PDEs Machine Learning

2019

  1. S. Shivakumar, A. Das, S. Weiland, M. M. Peet. A generalized LMI formulation for input-output analysis of linear systems of ODEs coupled with PDEs. 2019 IEEE 58th conference on decision and control (CDC), 2019. [DOI] Control of PDEs
  2. A. Das, S. Shivakumar, S. Weiland, M. M. Peet. ℋ∞ Optimal Estimation for Linear Coupled PDE Systems. 2019 IEEE 58th Conference on Decision and Control (CDC), 2019. [DOI] Control of PDEs Machine Learning
  3. M. Peet, S. Shivakumar, A. Das, S. Weiland. Discussion Paper: A New Mathematical Framework for Representation and Analysis of Coupled PDEs. 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019: Oaxaca, Mexico, 20–24 May 2019, 2019. [DOI] Control of PDEs
  4. A. Das, S. Weiland, M. V. Berkel. Frequency domain estimation of spatially varying parameters in heat and mass transport. 2019 American Control Conference (ACC), 2019. [DOI] Control of PDEs Machine Learning
  5. T. D. Hoang, A. Das, S. Koekebakker, S. Weiland. Sensorless Field-Oriented Estimation of Hybrid Stepper Motors in High-Performance Paper Handling. 2019 IEEE Conference on Control Technology and Applications (CCTA), 2019. [DOI] Machine Learning

2018

  1. A. Das, S. Weiland, L. Iapichino. Model approximation of thermo-fluidic diffusion processes in spatially interconnected structures. 2018 European Control Conference (ECC), 2018. [DOI] Control of PDEs

2017

  1. A. Das, Y. Kasemsinsup, S. Weiland. Optimal trajectory tracking control for automated guided vehicles. IFAC-PapersOnLine, 2017. [DOI]